AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Genetic Diversity and Structure of Tunisian Local Pear Germplasm as Revealed by SSR Markers

Rim Ounia( )Anna ZborowskabJasna SehiccSarra ChoulakdJ. Iñaki HormazaeLarisa Garkava-GustavssonbMessaoud Marsa
Research Unit on Agrobiodiversity (UR13AGR05), Higher Agronomic Institute, IRESA-University of Sousse, Chott-Mariem 4042, Tunisia
Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
Department of Plant Breeding-Balsgård, Swedish University of Agricultural Sciences, Fjälkestadsvägen 459, SE-29194 Kristianstad, Sweden
Laboratory of Genetics, Biodiversity and Bioresources Valorisation (LR11ES41), ISBM, University of Monastir, Monastir 5000, Tunisia
Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Estaci on Experimental La Mayora, Algarrobo-Costa, Málaga 29750, Spain

Peer review under responsibility of Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Growing pear has a long tradition in Tunisia, and numerous local cultivars possessing an excellent adaptability and resilience potential to climatic variation are present. This large adaptability is associated with an important genetic diversity, which is threatened to erosion. Appropriate measures have to be taken in order to properly evaluate and conserve this local material. Microsatellite markers were used to assess the level of genetic diversity among Tunisian pear germplasm, and compare it with some European varieties and wild pear species. 61 pear accessions representing eight groups (six groups from Tunisia, one from Northern Europe and another group composed of wild pear) have been genotyped using SSR markers derived from apple and pear. The pear accessions showed a significant polymorphism and 95 polymorphic alleles were found. The number of alleles per locus varied from 5 for CH04e03 locus to 14 for CH01d09 locus with an average of 9.4 alleles per locus. Moreover, the mean gene diversity (He) per locus ranged from 0.192 to 0.752. Genetic distance values and cluster analyses revealed high genetic similarities among the Tunisian groups. Factorial correspondence analysis (FCA) categorized the accessions into three independent groups where Tunisian local accessions agglomerated together distantly from European and wild pear accessions. Additionally, UPGMA dendrogram grouped accessions into two clusters, confirmed thereafter by the Bayesian model-based Structure analysis. The results showed 16 putative triploid accessions found in the local germplasm. This study provides valuable information to develop strategies of local pear conservation and use.

References

 

Ait Said, A., Oukabli, A., Gaboun, F., Simard, M.H., El Modafar, C., 2013. Phenotypic biodiversity of an endemic wild pear Pyrus mamorensis Trab. in North-Western Morocco using morphological descriptors. Genet Resour Crop Evol, 60: 927–938.

 

Akçay, M.E., Burak, M., Kazan, K., Yűksel, C., Mutaf, F., Bakir, M., Ayanoğlu, H., Ergűl, A., 2014. Genetic analysis of Anatolian pear germplasm by simple sequence repeats. Ann Appl Biol, 164: 441–452.

 

Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E., 1993. Optimizing parental selection for genetic linkage maps. Genome, 36: 181–186.

 

Bao, L., Chen, K., Zhang, D., Cao, Y., Yamamoto, T., Teng, Y., 2007. Genetic diversity and similarity of pear cultivars native to East Asia revealed by SSR (Simple Sequence Repeat) markers. Genet Resour Crop Evol, 54: 959–971.

 
Belkhir, L.C., Raufaste, N., Bonhomme, F., 1996-2004. GENETIX 4.05, Windows Tm software for population genetics. Genome P Laboratory, interactions, CNRS UMR 5171, Université de Montpellier Ⅱ, Montpellier, France. (in French)
 

Brini, W., Mars, M., 2008. Prospection du poirier local (Pyrus communis L.) au centre-est (Sahel) de la Tunisie [Prospecting the local pear tree (Pyrus communis L.) in the center-east (Sahel) of Tunisia]. Noticiario de recursos fitogenéticos-FAO. IPGRI (Italia), 153: 55-60. (in French)

 

Brini, W., Mars, M., Hormaza, J.I., 2008. Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers. Sci Hortic, 115: 337–341.

 

Carraut, A., 1986. Poirier rootstocks: new perspectives for Tunisia. Agron Hortic, 1: 7-14. (in French)

 

Challice, J.S., Westwood, M.N., 1973. Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc, 67: 121–148.

 

Chagné, D., Crowhurst, R.N., Pindo, M., Thrimawithana, A., Deng, C., Ireland, H., Fiers, M., Dzierzon, H., Cestaro, A., Fontana, P., Bianco, L., Lu, A., Storey, R., Knäbel, M., Saeed, M., Montanari, S., Kim, Y.K., Nicolini, D., Larger, S., Stefani, E., Allan, A.C., Bowen, J., Harvey, I., Johnston, J., Malnoy, M., Troggio, M., Perchepied, L., Sawyer, G., Wiedow, C., Won, K., Viola, R., Hellens, R.P., Brewer, L., Bus, V.G., Schaffer, R.J., Gardiner, S.E., Velasco, R., 2014. The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS ONE, 9: 1–12.

 

Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology, 26: 297–302.

 

Earl, D.A., von Holdt, B.M., 2012. STRUCTURE HARVESTER: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour, 4: 359–361.

 

Evans, K.M., Fernández-Fernández, F., Govan, C., 2009. Harmonising fingerprinting protocols to allow comparisons between germplasm collections-Pyrus. Acta Hortic, 814: 103–106.

 

Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 14: 2611–2620.

 

Fernández-Fernández, F., Harvey, N.G., James, C.M., 2006. Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes, 6: 1039–1041.

 

Ferradini, N., Lancioni, H., Terricelli, R., Russi, L., Dalla Ragione, I., Cardinali, I., Marconi, G., Gramaccia, M., Concezzi, L., Achilli, A., Veronesi, F., Albertini, E., 2017. Characterization and phylogenetic analysis of ancient Italian landraces of pear. Front Plant Sci, 8: 751.

 

Ferreira dos Santos, A.R.F., Ramos-Cabrer, A.M., Diaz-Hernandez, M.B., Pereira-Lorenzo, S., 2011. Pear diversity in northwestern Spain determined by microsatellites. Acta Hortic, 918: 201–207.

 

Garkava-Gustavsson, L., Kolodinska Brantestam, A., Sehic, J., Nybom, H., 2008. Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas, 145: 99–112.

 

Gianfranceschi, L., Seglias, N., Tarchini, R., Komjanc, M., Gessler, C., 1998. Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet, 96: 1069–1076.

 

Hokanson, S.C., Szewc-McFadden, A.K., Lamboy, W.F., McFerson, J.R., 1998. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet, 97: 671–683.

 

Janick, J., Paull, R.E., 2008. The Encyclopedia of Fruits and Nuts. CABI Publishing, Wallingford, United Kingdom.

 

Katayama, H., Uematsu, C., 2006. Pear (Pyrus species) genetic resources in Iwate. Jpn Genet Resour Crop Evol, 53: 483–498.

 

Kimura, T., Shi, Y.Z., Shoda, M., Kotobuki, K., Matsuta, N., Hayashi, T., Ban, Y., Yamamoto, T., 2002. Identification of Asian pear varieties by SSR analysis. Breed Sci, 52: 115–121.

 

Kumar, S., Kirk, C., Deng, C., Wiedow, C., Knaebel, M., Brewer, L., 2017. Genotyping-by-sequencing of pear (Pyrus spp.) accessions unravels novel patterns of genetic diversity and selection footprints. Hort Res, 4: 1–10.

 

Liebhard, R., Gianfranceschi, L., Koller, B., Ryder, C.D., Tarchini, R., van de Weg, E., Gessler, C., 2002. Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed, 10: 217–241.

 

Lin, S.H., Fang, C.Q., 1994. Studies on chromosome of Pyrus in China. Acta Hortic, 367: 27–32.

 

Liu, J., Zheng, X., Potter, D., Hu, C., Teng, Y., 2012. Genetic diversity and population structure of Pyrus calleryana (Rosaceae) in Zhejiang province, China. Biochem Syst Ecol, 45: 69–78.

 

Mars, M., Carraut, A., Marrakchi, M., Gouiaa, M., Gaaliche, F., 1994. Ressources génétiques fruitières en Tunisie (poirier, oranger, figuier, grenadier). Plant Genet Res Newslett, 100: 14-17. (In French)

 

Mir Ali, N., Haider, I., Nabulsi, I., Al-Oudat, M., 2007. Pyrus syriaca: an ecological and molecular study. Adv Hort Sci, 21: 89–95.

 

Nashima, K., Terakami, S., Nishio, S., Kunihisa, M., Nishitani, C., Saito, T., Yamamoto, T., 2015. S-genotype identification based on allele-specific PCR in Japanese pear. Breed Sci, 65: 208–215.

 

Nei, M., 1972. Genetic distance between populations. Am Nat, 106: 283–292.

 

Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590.

 

Peakall, R., Smouse, P.E., 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes, 6: 288–295.

 

Pereira-Lorenzo, S., Ferreira dos Santos, A.R., Ramos-Cabrer, A.M., Sau Belén Díaz-Hernández, M., 2012. Morphological variation in local pears from North-Western Spain. Sci Hortic, 138: 176–182.

 

Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.

 

Puskás, M., Höfer, M., Sestras, R.E., Peil, A., Sestras, A.F., Hanke, M.V., Flachowsky, H., 2016. Molecular and flow cytometric evaluation of pear (Pyrus L.) genetic resources of the German and Romanian national fruit collections. Genet Resour Crop Evol, 63: 1023–1033.

 

Rana, J.C., Chahota, R.K., Sharma, V., Maneet, R., Verma, N., Verma, B., Sharma, T.R., 2015. Genetic diversity and structure of Pyrus accessions of Indian Himalayan region based on morphological and ssr markers. Tree Genet Genomes, 11: 821–834.

 

Rhouma, A., Helali, F., Chattaoui, M., Hajjouji, M., Hajlaoui, R., 2014. First report of fire blight caused by Erwinia amylovora on pear in Tunisia. Plant Dis, 98: 158.

 

Rodger, C.E., Campbell, C.S., 2002. The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot, 89: 1478–1484.

 

Rubtsov, G.A., 1944. Geographical distribution of the genus Pyrus: trends and factors in its evaluation. Amer Nat, 78: 358–366.

 

Sehic, J., Garkava-Gustavsson, L., Fernández-Fernández, F., Nybom, H., 2012. Genetic diversity in a collection of European pear (Pyrus communis) cultivars determined with SSR markers chosen by ECPGR. Sci Hortic, 145: 39–45.

 

Sisko, M., Javornik, B., Siftar, A., Ivancic, A., 2009. Genetic relationships among Slovenian pears assessed by molecular markers. J Am Soc Hortic Sci, 134: 97–108.

 

Slatkin, M., Barton, N.H., 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution (N Y), 43: 1349–1368.

 

Sugiura, A., Ohkuma, T., Choi, Y.A., Tao, R., 2000. Production of nonaploid (2n = 9x) Japanese persimmons (Diospyros kaki) by pollination with unreduced (2n = 6x) pollen embryo rescue culture. J Am Soc Hortic Sci, 125: 609–614.

 

Teng, Y., Tanabe, K., Tazmura, F., Itai, A., 2002. Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci, 127: 262–270.

 

Wang, X., Wang, H., Shia, C., Zhanga, X., Duana, K., Luo, J., 2015. Morphological, cytological and fertility consequences of a spontaneous tetraploid of the diploid pear (Pyrus pyrifolia Nakai) cultivar ‘Cuiguan’. Sci Hortic, 189: 59–65.

 

Weir, B.S., Cockerham, C., 1984. Estimating F-statistics for the analysis of population structure. Evolution (N Y), 38: 1358–1370.

 

Wolko, Ł., Antkowiak, W., Lenartowicz, E., Bocianowski, J., 2010. Genetic diversity of European pear cultivars (Pyrus communis L.) and wild pear [Pyrus pyraster (L.) Burgsd.] inferred from microsatellite markers analysis. Genet Resour Crop Evol, 57: 801–806.

 

Xue, L., Liu, Q., Qin, M., Zhang, M., Wu, X., Wu, J., 2017. Genetic variation and population structure of ‘Zangli’ pear landraces in Tibet revealed by SSR markers. Tree Genet Genomes, 13: 1–11.

 
Yamamoto, T., Chevreau, E., 2009. Pear genomics, in: Folta, K.M., Gardiner, S.E. (Eds.), Genetics and Genomics of Rosaceae. Springer, New York: 163–187.
 
Yeh, F.C., Yang, R., Boyle, T., 1999. POPGENE Version 1.31. Microsoft Windows–Based Freeware For Population Genetic analysis, Quick User Guide. Center for International Forestry Research, University of Alberta, Edmonton, Alberta, Canada: 1–29.
 

Zheng, X., Cai, D., Potter, D., Postman, J., Liu, J., Teng, Y., 2014. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol Phylogenet Evol, 80: 54–65.

 

Zisovich, A., Stern, R.A., Goldway, M., 2009. Identification of seven haplotype-specific SFBs in European pear (Pyrus communis) and their use as molecular markers. Sci Hortic, 121: 49–53.

 

Zisovich, A.H., Raz, A., Stern, R.A., Goldway, M., 2010. Syrian pear (Pyrus syriaca) as a pollinator for European pear (Pyrus communis) cultivars. Sci Hortic, 125: 256–262.

Horticultural Plant Journal
Pages 61-70
Cite this article:
Ouni R, Zborowska A, Sehic J, et al. Genetic Diversity and Structure of Tunisian Local Pear Germplasm as Revealed by SSR Markers. Horticultural Plant Journal, 2020, 6(2): 61-70. https://doi.org/10.1016/j.hpj.2020.03.003

346

Views

4

Downloads

23

Crossref

N/A

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 12 August 2019
Revised: 19 September 2019
Accepted: 03 January 2020
Published: 06 March 2020
© 2020 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return