AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Tobacco Rattle Virus-induced Phytoene Desaturase (PDS) Silencing in Centaurea cyanus

Chengyan DengFan ZhangJiaying WangYanfei LiHe HuangSilan Dai( )
Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China

Peer review under responsibility of Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Virus-induced gene silencing (VIGS) is a genetic tool used to assess gene function. Tobacco rattle virus (TRV) is a VIGS vector commonly used to induce endogenous gene silencing in plants. However, there is no VIGS system established for Centaurea spp. We evaluated the effectiveness of a TRV-based VIGS system using phytoene desaturase (PDS) as a reporter gene in Centaurea cyanus. Three methods including pressure-, vacuum- and apical meristem-infiltration were tested to infect C. cyanus seedlings. Photobleached leaves were only obtained using apical meristem-infiltration after a 14 d treatment. The CcPDS transcripts in photobleached leaves were significantly reduced compared with that in green leaves treated with empty TRV. Four C. cyanus cultivars were tested to detect their VIGS responses, and ‘Dwarf Tom Pouce Blue’ was the most sensitive. The agro-infiltration condition was optimized by screening for the optimal seedling stage as well as the optimum Agrobacterium density for efficient silencing. Seedlings with four true leaves and infiltration with an Agrobacterium density of OD600 0.5 were optimal conditions to obtain more photobleached leaves and more intense photobleached phenotype. The results demonstrated the feasibility of TRV-based VIGS for functional analysis of genes in C. cyanus.

References

 

Abou-Alaiwi, W.A., Potlakayala, S.D., Goldman, S.L., Josekutty, P.C., Karelia, D.N., Rudrabhatla, S.V., 2012. Agrobacterium-mediated transformation of the medicinal plant Centaurea montana. Plant Cell Tiss Org, 109: 1-8.

 

Alaiwi, W.A., Sairam, R.V., Josekutty, P.C., Potlakayala, S.D., Karelia, D., Goldman, S.L., 2012. In vitro regeneration, flowering, and cell culture of Centaurea species. Afr J Biotechnol, 11: 2296-2302.

 

Becker, A., Lange, M., 2009. VIGS–genomics goes functional. Trends Plant Sci, 15: 1-4.

 

Deng, C., Wang, J., Lu, C., Li, Y., Kong, D., Hong, Y., Huang, H., Dai, S., 2020. CcMYB6-1 and CcbHLH1, two novel transcription factors synergistically involved in regulating anthocyanin biosynthesis in cornflower. Plant Physiol Bioch, 151: 271-283.

 

Deng, X., Elomaa, P., Nguyen, C.X., Hytönen, T., Valkonen, J.P.T., Teeri, T.H., 2012. Virus-induced gene silencing for Asteraceae—A reverse genetics approach for functional genomics in Gerbera hybrida. Plant Biotechnol J, 10: 970-978.

 

Di Stilio, V.S., Kumar, R.A., Oddone, A.M., Tolkin, T.R., Salles, P., McCarty, K., 2010. Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS ONE, 5: e12064.

 

Dommes, A.B., Gross, T., Herbert, D.B., Kivivirta, K.I., Becker, A., 2019. Virus-induced gene silencing: empowering genetics in non-model organisms. J Exp Bot, 70: 757-770.

 

Dong, Y., Burch-Smith, T.M., Liu, Y., Mamillapalli, P., Dinesh-Kumar, S.P., 2007. A ligation-independent cloning Tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol, 145: 1161-1170.

 

Escher, G.B., Santos, J.S., Rosso, N.D., Marques, M.B., Azevedo, L., do Carmo, M.A.V., Daguer, H., Molognoni, L., do Prado-Silva, L., Sant'Ana, A.S., da Silva, M.C., Granato, D., 2018. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract. Food Chem Toxicol, 118: 439-453.

 

Fernandes, L., Pereira, J.A., Saraiva, J.A., Ramalhosa, E., Casal, S., 2019. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Res Int, 123: 771-778.

 

Garbacki, N., Gloaguen, V., Damas, J., Bodart, P., Tits, M., Angenot, L., 1999. Anti-inflammatory and immunological effects of Centaurea cyanus flower-heads. J Ethnopharmacol, 68: 235-241.

 

Gu, Z., Zhu, J., Hao, Q., Yuan, Y., Duan, Y., Men, S., Wang, Q., Hou, Q., Liu, Z., Shu, Q., Wang, L., 2019. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa). Plant Cell Physiol, 60: 599-611.

 

Haratym, W., Weryszko-Chmielewska, E., Konarska, A., 2020. Microstructural and histochemical analysis of aboveground organs of Centaurea cyanus used in herbal medicine. Protoplasma, 257: 285-298.

 

Kim, J., Park, M., Jeong, E.S., Lee, J.M., Choi, D., 2017. Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods, 13: 3.

 

Kuś, P.M., Jerković, I., Tuberoso, C.I.G., Marijanović, Z., Congiu, F., 2014. Cornflower (Centaurea cyanus L.) honey quality parameters: chromatographic fingerprints, chemical biomarkers, antioxidant capacity and others. Food Chem, 142: 12-18.

 

Lockowandt, L., Pinela, J., Roriz, C.L., Pereira, C., Abreu, R.M.V., Calhelha, R.C., Alves, M.J., Barros, L., Bredol, M., Ferreira, I.C.F.R., 2019. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: the blue flowers and the unexplored non-edible part. Ind Crop Prod, 128: 496-503.

 

Lü, P., Zhang, C., Liu, J., Liu, X., Jiang, G., Jiang, X., Khan, M.A., Wang, L., Hong, B., Gao, J., 2014. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. Plant J, 78: 578-590.

 

Mallón, R., Rodríguez-Oubiña, J., González, M.L., 2010. In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tiss Org, 101: 31-39.

 

Martín-Hernández, A.M., Baulcombe, D.C., 2008. Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems. J Virol, 82: 4064-4071.

 

Naing, A.H., Song, H.Y., Lee, J.M., Lim, K.B., Kim, C.K., 2019. Development of an efficient virus-induced gene silencing method in petunia using the pepper phytoene desaturase (PDS) gene. Plant Cell Tiss Org, 138: 507-515.

 

Oelschlaegel, S., Pieper, L., Staufenbiel, R., Gruner, M., Zeippert, L., Pieper, B., Koelling-Speer, I., Speer, K., 2012. Floral markers of cornflower (Centaurea cyanus) honey and its peroxide antibacterial activity for an alternative treatment of digital dermatitis. J Agr Food Chem, 60: 11811-11820.

 

Pires, T.C.S.P., Dias, M.I., Barros, L., Calhelha, R.C., Alves, M.J., Oliveira, M.B.P.P., Santos-Buelga, C., Ferreira, I.C.F.R., 2018. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res Int, 105: 580-588.

 

Ratcliff, F., Martin‐Hernandez, A.M., Baulcombe, D.C., 2001. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J, 25: 237-245.

 

Wang, C., Fu, D., 2018. Virus-induced gene silencing of the eggplant chalcone synthase gene during fruit ripening modifies epidermal cells and gravitropism. J Agr Food Chem, 66: 2623-2629.

 

Xie, L.F., Ren, C.H., Zhang, B., Xu, C.J., Li, X., 2019. Plant UDP-glycosyltransferases in flavonoids biosynthesis. Acta Horticulturae Sinica, 46: 1655-1669. (in Chinese)

 

Xu, H., Xu, L., Yang, P., Cao, Y., Tang, Y., He, G., Yuan, S., Lei, J., Ming, J., 2019. Virus-induced phytoene desaturase (PDS) gene silencing using Tobacco rattle virus in Lilium × formolongi. Hortic Plant J, 5: 31-38.

 

Yan, H., Shi, S., Ma, N., Cao, X., Zhang, H., Qiu, X., Wang, Q., Jian, H., Zhou, N., Zhang, Z., Tang, K., 2018. Graft-accelerated virus‐induced gene silencing facilitates functional genomics in rose flowers. J Integr Plant Biol, 60: 34-44.

 

Zhang, J., Yu, D., Zhang, Y., Liu, K., Xu, K., Zhang, F., Wang, J., Tan, G., Nie, X., Ji, Q., Zhao, L., Li, C., 2017. Vacuum and co-cultivation agro-infiltration of (germinated) seeds results in Tobacco rattle virus (TRV) mediated whole-plant virus-induced gene silencing (VIGS) in wheat and maize. Front Plant Sci, 8: 393.

 

Zhao, N., Liu, C., Meng, Y., Hu, Z., Zhang, M., Yang, J., 2019. Identification of flowering regulatory genes in allopolyploid Brassica juncea. Hortic Plant J, 5: 109-119.

 

Zhou, J., Hunter, D.A., Lewis, D.H., McManus, M.T., Zhang, H., 2018. Insights into carotenoid accumulation using VIGS to block different steps of carotenoid biosynthesis in petals of California poppy. Plant Cell Rep, 37: 1311-1323.

Horticultural Plant Journal
Pages 159-166
Cite this article:
Deng C, Zhang F, Wang J, et al. Tobacco Rattle Virus-induced Phytoene Desaturase (PDS) Silencing in Centaurea cyanus. Horticultural Plant Journal, 2021, 7(2): 159-166. https://doi.org/10.1016/j.hpj.2020.08.002

342

Views

10

Downloads

14

Crossref

N/A

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 30 March 2020
Revised: 18 May 2020
Accepted: 22 July 2020
Published: 21 August 2020
© 2021 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return