AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Heterologous Expression of Camellia sinensis Late Embryogenesis Abundant Protein Gene 1 (CsLEA1) Confers Cold Stress Tolerance in Escherichia coli and Yeast

Tong GaoYunxin MoHuiyu HuangJinming YuYi WangWeidong Wang( )
College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China

Peer review under responsibility of Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Late embryogenesis abundant (LEA) proteins play an important role in plant growth and development, as well as in the plant response to various abiotic stresses. In this study, CsLEA1, a novel gene encoding a LEA_3 subfamily protein, was successfully cloned from a tea plant [Camellia sinensis (L.) O. Kuntze]. Bioinformatics analysis and prokaryotic expression assays showed that CsLEA1 is a typical hydrophilic protein with a molecular weight of approximately 10.4 kD. Expression analyses revealed that the transcription of CsLEA1 in C. sinensis leaves was significantly induced by cold stress. In addition, the heterologous expression of CsLEA1 increased the tolerance of Escherichia coli and yeast to cold stress, which might be closely related to the low molecular weight and high hydrophilicity of the CsLEA1. Taken together, our results suggest that CsLEA1 might have an important function in the tolerance of C. sinensis to cold stress, thus providing a potential application in molecular breeding to enhance the cold stress tolerance of tea plants.

References

 

Cao, J., Li, X., 2015. Identification and phylogenetic analysis of late embryogenesis abundant proteins family in tomato (Solanum lycopersicum). Planta, 241: 757–772.

 

Du, D., Zhang, Q., Cheng, T., Pan, H., Yang, W., Sun, L., 2013. Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep, 40: 1937–1946.

 

Du, J., Wang, L., Zhang, X., Xiao, X., Wang, F., Lin, P., Bao, F., Hu, Y., He, Y., 2016. Heterologous expression of two Physcomitrella patens group 3 late embryogenesis abundant protein (LEA3) genes confers salinity tolerance in Arabidopsis. J Plant Biol, 59: 182–193.

 

Dure, L.R., Greenway, S.C., Galau, G.A., 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 20: 4162–4168.

 

Eriksson, S.K., Kutzer, M., Procek, J., Grobner, G., Harryson, P., 2011. Tunable membrane binding of the intrinsically disordered Dehydrin Lti30, a cold-Induced plant stress protein. Plant Cell, 23: 2391–2404.

 

Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A., Covarrubias, A.A., 2000. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem, 275: 5668–5674.

 

Guo, J., Chen, J., Yang, J., Yu, Y., Yang, Y., Wang, W., 2018. Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). BMC Genomics, 19: 710.

 

Hao, X., Horvath, D.P., Chao, W.S., Yang, Y., Wang, X., Xiao, B., 2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci, 15: 22155–22172.

 

Hao, X., Wang, B., Wang, L., Zeng, J., Yang, Y., Wang, X., 2018. Comprehensive transcriptome analysis reveals common and specific genes and pathways involved in cold acclimation and cold stress in tea plant leaves. Sci Hortic, 240: 354–368.

 

Hara, M., Terashima, S., Fukaya, T., Kuboi, T., 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta, 217: 290–298.

 

Kim, S.J., Huh, Y.C., Ahn, Y., Kim, J., Kim, D., Lee, H., 2015. Watermelon (Citrullus lanatus) late-embryogenesis abundant group 3 protein, ClLEA3-1, responds to diverse abiotic stresses. Hortic Environ Biote, 56: 555–560.

 

Li, N., Zhang, S., Liang, Y., Qi, Y., Chen, J., Zhu, W., Zhang, L., 2018. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J Proteomics, 172: 122–142.

 

Liang, Y., Xiong, Z., Zheng, J., Xu, D., Zhu, Z., Xiang, J., Gan, J., Raboanatahiry, N., Yin, Y., Li, M., 2016. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep, 6: 24265.

 

Liu, G.T., Chai, F.M., Wang, Y., Jiang, J.Z., Duan, W., Wang, Y.T., Wang, F.F., Li, S.H., Wang, L.J., 2018. Genome-wide identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress. Hortic. Plant J, 4: 133–143.

 

Liu, H., Yu, C., Li, H., Ouyang, B., Wang, T., Zhang, J., Wang, X., Ye, Z., 2015. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci, 231: 198–211.

 

Liu, Y., Liang, J., Sun, L., Yang, X., Li, D., 2016. Group 3 LEA Protein, ZmLEA3, is involved in protection from low temperature stress. Front Plant Sci, 7: 1011.

 

Liu, Y., Wang, L., Jiang, S., Pan, J., Cai, G., Li, D., 2014. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. Plant Physiol Bioch, 84: 22–31.

 

Liu, Y., Xie, L., Liang, X., Zhang, S., 2015. CpLEA5, the late embryogenesis abundant protein gene from Chimonanthus praecox, possesses low temperature and osmotic resistances in prokaryote and eukaryotes. Int J Mol Sci, 16: 26978–26990.

 

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402–408.

 

Llanes, A., Devinar, G., Macchi, S.V., Luna, V., 2016. Isolation of a gene encoding a novel atypical LEA protein from the halophyte Prosopis strombulifera with a sodium salt-specific expression. Plant Growth Regul, 78: 93–103.

 

Muoki, R.C., Paul, A., Kumar, S., 2012. A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genom, 12: 565–571.

 

Paul, A., Singh, S., Sharma, S., Kumar, S., 2014. A stress-responsive late embryogenesis abundant protein 7 (CsLEA7) of tea [Camellia sinensis (L.) O. Kuntze] encodes for a chaperone that imparts tolerance to Escherichia coli against stresses. Mol Biol Rep, 41: 7191–7200.

 

Reyes, J.L., Campos, F., Wei, H., Arora, R., Yang, Y., Karlson, D.T., Covarrubias, A.A., 2008. Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ, 31: 1781–1790.

 

Saha, B., Mishra, S., Awasthi, J.P., Sahoo, L., Panda, S.K., 2016. Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern & Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene (AtLEA4-1). Environ Exp Bot, 128: 99–111.

 

Sahu, B., Sahu, A.K., Sahu, A., Naithani, S.C., 2018. Gene expression of late embryogenesis abundant proteins, small heat shock proteins and peroxiredoxin and oxidation of lipid and protein during loss and re-establishment of desiccation tolerance in Pisum sativum seeds. S Afr J Bot, 119: 28–36.

 

Sharma, A., Kumar, D., Kumar, S., Rampuria, S., Reddy, A.R., Kirti, P.B., 2016. Ectopic expression of an atypical hydrophobic group 5 LEA protein from wild peanut, Arachis diogoi confers abiotic stress tolerance in tobacco. PLoS ONE, 11: e0150609.

 

Shih, M., Hoekstra, F.A., Hsing, Y.C., 2008. Late embryogenesis abundant proteins. Adv Bot Res, 48: 211–255.

 

Wang, M., Li, P., Li, C., Pan, Y., Jiang, X., Zhu, D., Zhao, Q., Yu, J., 2014. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol, 14: 290.

 

Wang, M., Zou, Z., Li, Q., Xin, H., Zhu, X., Chen, X., Li, X., 2017. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Rep, 36: 1125–1135.

 

Wang, W., Gao, T., Chen, J., Yang, J., Huang, H., Yu, Y., 2019. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiol Bioch, 135: 277–286.

 

Wang, Y., Jiang, C.J., Li, Y.Y., Wei, C.L., Deng, W.W., 2012. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep, 31: 27–34.

 

Wang, Y.D., Chen, G.J., Lei, J.J., Cao, B.H., Chen, C.M., 2019. Identification and characterization of a LEA-like gene, CaMF5, specifically expressed in the anthers of male-fertile Capsicum annuum. Horticultural Plant Journal, 6: 39–48.

 

Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., Xia, E., Lu, Y., Tai, Y., She, G., Sun, J., Cao, H., Tong, W., Gao, Q., Li, Y., Deng, W., Jiang, X., Wang, W., Chen, Q., Zhang, S., Li, H., Wu, J., Wang, P., Li, P., Shi, C., Zheng, F., Jian, J., Huang, B., Shan, D., Shi, M., Fang, C., Yue, Y., Li, F., Li, D., Wei, S., Han, B., Jiang, C., Yin, Y., Xia, T., Zhang, Z., Bennetzen, J.L., Zhao, S., Wan, X., 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. P Natl Acad Sci USA, 115: E4151–E4158.

 

Yin, Y., Ma, Q., Zhu, Z., Cui, Q., Chen, C., Chen, X., Fang, W., Li, X., 2016. Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul, 80: 335–343.

 

Yu, J., Lai, Y., Wu, X., Wu, G., Guo, C., 2016. Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Commun, 478: 703–709.

 

Zeng, X., Ling, H., Yang, J., Li, Y., Guo, S., 2018. LEA proteins from Gastrodia elata enhance tolerance to low temperature stress in Escherichia coli. Gene, 646: 136–142.

 

Zhao, M., Liu, H., Deng, Z., Chen, J., Yang, H., Li, H., Xia, Z., Li, D., 2017. Molecular cloning and characterization of S-adenosylmethionine decarboxylase gene in rubber tree (Hevea brasiliensis). Physiol Mol Biol Pla, 23: 281–290.

 

Zhou, Y., He, P., Xu, Y., Liu, Q., Yang, Y., Liu, S., 2017. Overexpression of CsLEA11, a Y3SK2-type dehydrin gene from cucumber (Cucumis sativus), enhances tolerance to heat and cold in Escherichia coli. AMB Express, 7: 182.

Horticultural Plant Journal
Pages 89-96
Cite this article:
Gao T, Mo Y, Huang H, et al. Heterologous Expression of Camellia sinensis Late Embryogenesis Abundant Protein Gene 1 (CsLEA1) Confers Cold Stress Tolerance in Escherichia coli and Yeast. Horticultural Plant Journal, 2021, 7(1): 89-96. https://doi.org/10.1016/j.hpj.2020.09.005

342

Views

5

Downloads

8

Crossref

N/A

Web of Science

11

Scopus

4

CSCD

Altmetrics

Received: 24 March 2020
Revised: 20 July 2020
Accepted: 27 August 2020
Published: 12 September 2020
© 2020 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return