AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Genome-wide investigation of the bZIP transcription factor gene family in Prunus mume: Classification, evolution, expression profile and low-temperature stress responses

Ping LiTangchun Zheng( )Lulu LiJia WangTangren ChengQixiang Zhang( )
Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding; National Engineering Research Center for Floriculture; Beijing Laboratory of Urban and Rural Ecological Environment; Engineering Research Center of Landscape Environment of Ministry of Education; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

Peer review under responsibility of Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Prunus mume is an important woody plant that has high ornamental and economic value, widely distributed and used in landscape architecture in East Asia. In plants, basic (region) leucine zipper (bZIP) transcription factors play important regulatory roles in growth, development, dormancy and abiotic stress. To date, bZIP transcription factors have not been systematically studied in P. mume. In this study, 49 bZIP genes were first identified in P. mume, and the PmbZIP family was divided into 12 groups according to the grouping principles for the Arabidopsis thaliana bZIP family. For the first time, we constructed a detailed model of the PmbZIP domains (R-x3N-x7-R/K-x2-K-x6-L-x6-L-x6-L). Phylogenetic and synteny analyses showed that PmbZIPs duplication events might have occurred during the large-scale genome duplication events. A relatively short time of speciation and the finding that 91.84% of the bZIP genes formed orthologous pairs between P. mume and Prunus armeniaca provided evidence of a close relationship. Gene expression patterns were analysed in different tissues and periods, indicating that PmbZIP genes with the same motifs exhibited similar expression patterns. The gene expression results showed that PmbZIP31/36/41 genes played a more prominent role in the response to freezing stress than cold stress. The expression level of almost all subset III genes was upregulated under freezing treatment, especially after cold exposure. We analysed the gene expression patterns of PmbZIP12/31/36/41/48 and their responses to low-temperature stress, which provided useful resources for future studies on the cold/freezing-tolerant molecular breeding of P. mume.

References

 

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., Araki, T., 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 309: 1052-1056.

 

Alonso, R., Oñate-Sánchez, L., Weltmeier, F., Ehlert, A., Diaz, I., Dietrich, K., Vicente-Carbajosa, J., Dröge-Laser, W., 2009. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell, 21: 1747-1761.

 

An, J.P., Qu, F.J., Yao, J.F., Wang, X.N., You, C.X., Wang, X.F., Hao, Y.J., 2017a. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic Res., 4: 17023.

 

An, J.P., Yao, J.F., Wang, X.N., You, C.X., Wang, X.F., Hao, Y.J., 2017b. MdHY5 positively regulates cold tolerance via CBF dependent and CBF independent pathways in apple. J. Plant Physiol., 218: 275-281.

 

Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Stockinger, H., 2012. ExPASy: sib bioinformatics resource portal. Nucleic Acids Res., 40: W597-W603.

 

Bailey, T., Bodén, M., Buske, F., Frith, M., Grant, C., Clementi, L., Ren, J., Li, W., Noble, W., 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res., 37: W202-W208.

 

Bao, F., Ding, A., Cheng, T., Wang, J., Zhang, Q., 2019. Genome-wide analysis of members of the WRKY gene family and their cold stress response in Prunus mume. Genes (Basel), 10: 911.

 

Blanc, G., Wolfe, K.H., 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 16: 1667-1678.

 

Cai, W., Yang, Y., Wang, W., Guo, G., Liu, W., Bi, C., 2018. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs. Plant Physiol. Biochem., 124: 100-111.

 

Che, P., Bussell, J.D., Zhou, W., Estavillo, G.M., Pogson, B.J., Smith, S.M., 2010. Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci. Signal, 3: ra69.

 

Chen, C., Xia, R., Chen, H., He, Y., 2018. Tbtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. Mol Plant, 13: 1194-1202.

 

Choi, H., Hong, J., Ha, J., Kang, J., Kim, S.Y., 2000. ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem., 275: 1723-1730.

 

Cui, B., Hao, P.A., Liang, F., Zhang, Y., Wang, X.M., Li, J.L., Jiang, S.H., Xu, S.P., 2020. Cloning and expression analysis of AP2/ERF family gene from Phalaenopsis under low temperature. Acta Hortic. Sin., 47: 85-97. (in Chinese)

 

Dankov, K., Dobrikova, A., Bogos, B., Gombos, Z., Apostolova, E., 2009. The role of anionic lipids in lhcii organization and in photoinhibition of photosynthetic apparatus. Proc. Bulgarian Acad. Sci., 62: 941-948.

 
Das, P., Lakra, N., Nutan, K.K., Singla-Pareek, S.L., Pareek, A., 2019. A unique bzip transcription factor imparting multiple stress tolerance in rice. Rice (NY), 12 58-58.
 

Dietrich, K., Weltmeier, F., Ehlert, A., Weiste, C., Stahl, M., Harter, K., Dröge-Laser, W., 2011. Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress. Plant Cell, 23: 381-395.

 

Droge-Laser, W., Snoek, B.L., Snel, B., Weiste, C., 2018. The Arabidopsis bZIP transcription factor family-an update. Curr. Opin. Plant Biol., 45: 36-49.

 

E, Z.G., Zhang, Y.P., Zhou, J.H., Wang, L., 2014. Mini review roles of the bZIP gene family in rice. Genet. Mol. Res., 13: 3025-3036.

 

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, G.A., Smart, A., Sonnhammer, E.L.L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S.C.E., Finn, R.D., 2018. The Pfam protein families database in 2019. Nucleic Acids Res., 47: D427-D432.

 

Ellenberger, T., 1994. Getting a grip on DNA recognition: structures of the basic region leucine zipper, and the basic region helix-loop-helix DNA-binding domains. Curr. Opin. Struct. Biol., 4: 12-21.

 

Fang, H., Liu, Z., Long, Y., Liang, Y., Jin, Z., Zhang, L., Liu, D., Li, H., Zhai, J., Pei, Y., 2017. The Ca2+ /CaM2 binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis. Plant J., 91: 1038-1050.

 

Finkelstein, R., Lynch, T., 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 12: 599-609.

 

Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2005. AREB1 is a transcription activator of novel AREB-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17: 3470-3488.

 

Gatz, C., 2012. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways. Mol. Plant-Microbe Interact., 26: 151-159.

 

Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., Rokhsar, D.S., 2011. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res., 40: D1178-D1186.

 

Guan, Y., Ren, H., Xie, H., Ma, Z., Chen, F., 2009. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J., 60: 207-217.

 

Guo, C., Zhang, J., Peng, T., Bảo, M., Zhang, J., 2014. Structural and expression analyses of three PmCBFs from Prunus mume. Biol. Plant., 58: 247-255.

 

Holm, M., Ma, L.G., Qu, L.J., Deng, X.W., 2002. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev., 16: 1247-1259.

 

Horton, P., Park, K.-.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K., 2007. Wolf psort: protein localization predictor. Nucleic Acids Res., 35: W585-W587.

 

Hurst, H., 1994. Transcription factors 1: BZIP proteins. Protein Profile, 1: 123-168.

 

Izawa, T., Foster, R., Chua, N.H., 1993. Plant bZIP protein DNA binding specificity. J. Mol. Biol., 230: 1131-1144.

 

Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., Parcy, F., 2002. BZIP transcription factors in Arabidopsis. Trends Plant Sci., 7: 106-111.

 

Jiang, F., Zhang, J., Wang, S., Yang, L., Luo, Y., Gao, S., Zhang, M., Wu, S., Hu, S., Sun, H., Wang, Y., 2019. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic Res., 6: 128.

 

Johnson, L.S., Eddy, S.R., Portugaly, E., 2010. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics, 11: 431.

 

Jones, D., Taylor, W., Thornton, J., 1992. The Rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci., 8: 275-282.

 

Jung, S., Lee, T., Cheng, C.H., Buble, K., Zheng, P., Yu, J., Humann, J., Ficklin, S.P., Gasic, K., Scott, K., Frank, M., Ru, S., Hough, H., Evans, K., Peace, C., Olmstead, M., DeVetter, L.W., McFerson, J., Coe, M., Wegrzyn, J.L., Staton, M.E., Abbott, A.G., Main, D., 2018. 15 years of GDR: new data and functionality in the genome database for Rosaceae. Nucleic Acids Res., 47: D1137-D1145.

 

Kim, S., Kang, J.Y., Cho, D.I., Park, J.H., Kim, S.Y., 2004. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J., 40: 75-87.

 

Kim, S., Ma, J., Perret, P., Li, Z., Thomas, T., 2002. Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol., 130: 688-697.

 

Kobayashi, F., Maeta, E., Terashima, A., Kawaura, K., Ogihara, Y., Takumi, S., 2008. Development of abiotic stress tolerance via bZIP-type transcription factor lip19 in common wheat. J. Exp. Bot., 59: 891-905.

 

Koch, M., Haubold, B., Mitchell-Olds, T., 2000. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol., 17: 1483-1498.

 

Krogh, A., Larsson, B., Heijne, G., Sonnhammer, E., Bioinformatics, S., 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol., 305: 567-580.

 

Kumar, S., Stecher, G., Tamura, K., 2015. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33: 1870-1874.

 

Lara, P., Oñate-Sánchez, L., Abraham, Z., Ferrándiz, C., Díaz, I., Carbonero, P., Vicente-Carbajosa, J., 2003. Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. J. Biol. Chem., 278: 21003-21011.

 

Lei, L., Zhou, S., Ma, H., Zhang, L., 2012. Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa. BMC Evol. Biol., 12: 51.

 

Letunic, I., Bork, P., 2017. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res., 46: D493-D496.

 

Li, C., Yue, Y., Chen, H., Qi, W., Song, R., 2018. The Zmbzip22 transcription factor regulates 27-kd γ-zein gene transcription during maize endosperm development. Plant Cell, 30: 2402-2424.

 

Li, D., Fu, F., Zhang, H., Song, F., 2015. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genom., 16: 771.

 

Li, P., Zheng, T., Li, L., Zhuo, X., Jiang, L., Wang, J., Cheng, T., Zhang, Q., 2019. Identification and comparative analysis of the CIPK gene family and characterization of the cold stress response in the woody plant Prunus mume. PeerJ, 7: e6847.

 

Li, P., Zheng, T.C., Zhuo, X.K., Zhang, M., Yong, X., Li, L.L., Wang, J., Cheng, T.R., Zhang, Q.X., 2021. Photoperiod- and temperature-mediated control of the ethylene response and winter dormancy induction in Prunus mume. Hortic Plant J, 7: 232-242.

 

Liu, Yang, K.Z., Wei, X.X., Wang, X.Q., 2016. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic flowering locus t gene homologs in gymnosperms and sheds new light on functional evolution. New Phytol., 212: 730-744.

 

Liu, C., Wu, Y., Wang, X., 2011. Bzip transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta, 235: 1157-1169.

 

Liu, C.C., Chi, C., Jin, L.J., Zhu, J., Yu, J.Q., Zhou, Y.H., 2018b. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant Cell Environ., 41: 1762-1775.

 
Liu, J., Chen, N., Chen, F., Cai, B., Dal Santo, S., Tornielli, G.B., Pezzotti, M., Cheng, Z.M.M., 2014. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics, 15 281-281.
 

Ma, J., Hanssen, M., Lundgren, K., Hernández, L., Delatte, T., Ehlert, A., Liu, C.M., Schluepmann, H., Dröge-Laser, W., Moritz, T., Smeekens, S., Hanson, J., 2011. The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. New Phytol., 191: 733-745.

 

Marchler-Bauer, A., Anderson, J., Cherukuri, P., DeWeese-Scott, C., Geer, L., Gwadz, M., He, S., Hurwitz, D., Jackson, J., Ke, Z., Lanczycki, C., Liebert, C., Liu, C., Lu, F., Marchler, G., Mullokandov, M., Shoemaker, B., Simonyan, V., Song, J., Bryant, S., 2005. CDD: a conserved domain database for protein classification. Nucleic Acids Res., 33: D192-D196.

 

Meng, D., 2016. Genome-wide identification and expression analysis of the bZIP gene family in apple (Malus domestica). Tree Genet. Genomes, 12: 1-17.

 

Mueller, S., Hilbert, B., Dueckershoff, K., Roitsch, T., Krischke, M., Mueller, M., Berger, S., 2008. General detoxification and stress responses are mediated by Oxidized Lipids through TGA transcription factors in Arabidopsis. Plant Cell, 20: 768-785.

 

Nakashima, K., Fujita, Y., Katsura, K., Maruyama, K., Narusaka, Y., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2006. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol. Biol., 60: 51-68.

 

Pedrotti, L., Weiste, C., Nägele, T., Wolf, E., Lorenzin, F., Dietrich, K., Mair, A., Weckwerth, W., Teige, M., Baena-González, E., Dröge-Laser, W., 2018. Snf1-related kinase1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival in extended darkness. Plant Cell, 30: 495-509.

 

Pérez-Rodríguez, P., Riaño-Pachón, D.M., Corrêa, L.G.G., Rensing, S.A., Kersten, B., Mueller-Roeber, B., 2009. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res., 38: D822-D827.

 
Rambaut, A., 2009. FigTree, a Graphical Viewer of Phylogenetic Trees. Institute of Evolutionary Biology University of Edinburgh.
 

Ray, S., Satya, P., 2014. Next generation sequencing technologies for next generation plant breeding. Front. Plant Sci., 5: 367.

 

Rodríguez-Martínez, J.A., Reinke, A.W., Bhimsaria, D., Keating, A.E., Ansari, A.Z., 2017. Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. Elife, 6: e19272.

 

Roschzttardtz, H., Fuentes, I., Vásquez, M., Corvalán, C., León, G., Gómez, I., Araya, A., Holuigue, L., Vicente-Carbajosa, J., Jordana, X., 2009. A nuclear gene encoding the iron-sulfur subunit of mitochondrial complex II is regulated by B3 domain transcription factors during seed development in Arabidopsis. Plant Physiol., 150: 84-95.

 

Saitou, N.N.M., Nei, M., 1987. The neighbor-joining method-a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.

 

Sarna, A., Jain, M., Tyagi, A., Khurana, P., 2008. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol., 146: 333-350.

 

Satoh, R., Fujita, Y., Nakashima, K., Shinozaki, K., Yamaguchi-Shinozaki, K., 2004. A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol., 45: 309-317.

 

Shiota, H., Ko, S., Wada, S., Otsu, C.T., Tanaka, I., Kamada, H., 2008. A carrot G-box binding factor-type basic region/leucine zipper factor DcBZ1 is involved in abscisic acid signal transduction in somatic embryogenesis. Plant Physiol. Biochem., 46: 550-558.

 

Subramanian, B., Gao, S., Lercher, M., Hu, S., Chen, W.H., 2019. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res., 47: W270-W275.

 

Sun, L., Li, X., Wang, Z., Sun, Z., Zhu, X., Liu, S., Song, F., Liu, F., Wang, Y., 2018a. Cold priming induced tolerance to subsequent low temperature stress is enhanced by melatonin application during recovery in wheat. Molecules, 23: 1091.

 

Sun, T., Busta, L., Zhang, Q., Ding, P., Jetter, R., Zhang, Y., 2018b. Tgacg-binding factor 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of systemic acquired resistance deficient 1 (SARD1) and calmodulin-binding protein 60g (CBP60g). New Phytol., 217: 344-354.

 

Takahashi, H., Kawakatsu, T., Wakasa, Y., Hayashi, S., Takaiwa, F., 2012. A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response. Plant Cell Physiol., 53: 144-153.

 

Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K., 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. U. S. A., 97: 11632-11637.

 

Van de Peer, Y., Maere, S., Meyer, A., 2009. The evolutionary significance of ancient genome duplications. Nature Rev. Gen., 10: 725-732.

 

Wang, Y., Tang, H., Debarry, J., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., Kissinger, J., Paterson, A., 2012. MCScanx: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res., 40: e49.

 

Weltmeier, F., Ehlert, A., Mayer, C.S., Dietrich, K., Wang, X., Schütze, K., Alonso, R., Harter, K., Vicente-Carbajosa, J., Dröge-Laser, W., 2006. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J., 25: 3133-3143.

 

Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., Weigel, D., 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309: 1056-1059.

 

Xin, Z., Browse, J., 2000. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ., 23: 893-902.

 

Xu, Z., Zhang, Q., Sun, L., Du, D., Cheng, T., Pan, H., Yang, W., Wang, J., 2014. Genome-wide identification, characterisation and expression analysis of the MADs-box gene family in Prunus mume. Mol. Gen. Genom., 289: 903-920.

 

Zhang, Z., Zhuo, X., Zhao, K., Zheng, T., Han, Y., Yuan, C., Zhang, Q., 2018a. Transcriptome profiles reveal the crucial roles of hormone and sugar in the bud dormancy of Prunus mume. Sci. Rep., 8: 5090.

 

Zhang, H., Zhao, X., Li, J., Cai, H., Deng, X.W., Li, L., 2014a. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell, 26: 4933-4953.

 

Zhang, L., Zhang, L., Xia, C., Gao, L., Hao, C., Zhao, G., Jia, J., Kong, X., 2017. A novel wheat c-bzip gene, TabZIP14-B, participates in salt and freezing tolerance in transgenic plants. Front Plant Sci., 8: 710.

 

Zhang, L., Zhang, L., Xia, C., Zhao, G., Liu, J., Jia, J., Kong, X., 2014b. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol. Plant, 153: 538-554.

 

Zhang, Q., Chen, W., Sun, L., Zhao, F., Huang, B., Yang, W., Tao, Y., Wang, J., Yuan, Z., Fan, G., Xing, Z., Han, C., Pan, H., Zhong, X., Shi, W., Liang, X., Du, D., Sun, F., Xu, Z., Hao, R., Lv, T., Lv, Y., Zheng, Z., Sun, M., Luo, L., Cai, M., Gao, Y., Wang, J., Yin, Y., Xu, X., Cheng, T., Wang, J., 2012. The genome of Prunus mume. Nat. Commun., 3: 1318.

 

Zhao, K., Chen, S., Yao, W., Cheng, Z., Zhou, B., Jiang, T., 2021. Genome-wide analysis and expression profile of the bZIP gene family in poplar. BMC Plant Biol., 21: 122.

 

Zhao, X., Zheng, T., Shao, L., Xiao, Z., Wang, F., Li, S., Zang, L., Zheng, M., Li, Y., Qu, G.Z., 2016. Variation analysis of physiological traits in Betula platyphylla overexpressing TaLEA-ThbZIP gene under salt stress. PLoS ONE, 11, e0164820.

 

Zhuo, X., Zheng, T., Zhang, Z., Zhang, Y., Jiang, L., Ahmad, S., Sun, L., Wang, J., Cheng, T., Zhang, Q., 2018. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume. Genes (Basel), 9: 494.

Horticultural Plant Journal
Pages 230-242
Cite this article:
Li P, Zheng T, Li L, et al. Genome-wide investigation of the bZIP transcription factor gene family in Prunus mume: Classification, evolution, expression profile and low-temperature stress responses. Horticultural Plant Journal, 2022, 8(2): 230-242. https://doi.org/10.1016/j.hpj.2021.01.009

407

Views

8

Downloads

26

Crossref

23

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 12 December 2020
Revised: 19 March 2021
Accepted: 17 June 2021
Published: 24 July 2021
© 2021 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return