AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Comprehensive genomic analysis and expression profiling of cysteine-rich polycomb-like transcription factor gene family in tea tree

Hong Nana,bYanglei Lina,bXinghua Wangc( )Lizhi Gaoa,d( )
Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
University of the Chinese Academy of Sciences, Beijing 100039, China
Yunnan Pu'er Tea Tree Breeding Station, Pu Er 665099, China
Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
Show Author Information

Abstract

Cysteine-rich polycomb-like (CPP) is a small gene family in plants, which plays key role in plant development and stress response. Although CPP transcription factors have been characterized in several other plant species, a genome-wide characterization of the CPP gene family has been absent in Camellia sinensis. In this study, we totally identified 7, 8, and 8 non-redundant CsCPP genes in three published genomes, including Camellia sinensis var. assamica cv. Yunkang-10 (CSA-YK10), Camellia sinensis var. sinensis cv. Biyun (CSS-BY) and Camellia sinensis var. sinensis cv. Shuchazao (CSS-SCZ). CPP proteins from tea tree and other plant species were classified into three groups, which were further divided into four subgroups based on phylogenetic relationships. Most CPP genes in the same subgroup had similar gene structures and conserved motifs. The cis-acting elements analysis indicated that CPP genes might be involved in plant growth, development and stress responses. Analysis of gene expression using qRT-PCR experiments validated that CPP genes exhibited different expression patterns across the examined tissues. All the genes were expressed differentially in a range of tissues, indicating that CPPs were involved in a range of developmental and physiological processes. This study has obtained new insights into the evolution and function of the CPP gene family in the growth and development of tea plants, and also provide candidate genes for further functional characterization in tea tree.

References

 

Alexandrova, K.S., Conger, B.V., 2002. Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci, 162: 301–307.

 

Andersen, S.U., Algreen-Petersen, R.G., Hoedl, M., Jurkiewicz, A., Cvitanich, C., Braunschweig, U., Schauser, L., Oh, S.A., Twell, D., Jensen, E.O., 2007. The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J. Exp. Bot., 58: 3657–3670.

 

Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble, W.S., 2009. Meme suite: tools for motif discovery and searching. Nucleic Acids Res., 37: W202–W208.

 

Brzeska, K., Brzeski, J., Smith, J., Chandler, V.L., 2010. Transgenic expression of CBBP, a CXC domain protein, establishes paramutation in maize. Proc. Natl. Acad. Sci. U.S.A., 107: 5516–5521.

 

Chou, K.C., Shen, H.B., 2010. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE, 5: e11335.

 

Cvitanich, C., Pallisgaard, N., Nielsen, K.A., Hansen, A.C., Larsen, K., Pihakaski-Maunsbach, K., Marcker, K.A., Jensen, E.O., 2000. CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene. Proc. Natl. Acad. Sci. U.S.A., 97: 8163–8168.

 

Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2011. Prottest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27: 1164–1165.

 

Das, A., Mukhopadhyay, M., Mondal, T.K., 2016. Generation and characterization of expressed sequence tags in young roots of tea (Camellia assamica). Biol. Plant., 60: 48–54.

 

Guindon, S., Lethiec, F., Duroux, P., Gascuel, O., 2005. Phyml online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res., 33: W557–W559.

 

Guo, C., Guo, R., Xu, X., Gao, M., Li, X., Song, J., Zheng, Y., Wang, X., 2014. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J. Exp. Bot., 65: 1513–1528.

 

Hauser, B.A., He, J.Q., Park, S.O., Gasser, C.S., 2000. TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development, 127: 2219–2226.

 

Hauser, B.A., Villanueva, J.M., Gasser., C.S., 1998. Arabidopsis TSO1 regulates directional processes in cells during floral organogenesis. Genetics, 150: 411–423.

 

Hirsch, C.N., Hirsch, C.D., Brohammer, A.B., Bowman, M.J., Soifer, I., Barad, O., Shem-Tov, D., Baruch, K., Lu, F., Hernandez, A.G., Fields, C.J., Wright, C.L., Koehler, K., Springer, N.M., Buckler, E., Buell, C.R., de Leon, N., Kaeppler, S.M., Childs, K.L., Mikel, M.A., 2016. Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell, 28: 2700–2714.

 

Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., Wang, X., Xie, B., Ni, P., Ren, Y., Zhu, H., Li, J., Lin, K., Jin, W., Fei, Z., Li, G., Staub, J., Kilian, A., van der Vossen, E.A., Wu, Y., Guo, J., He, J., Jia, Z., Ren, Y., Tian, G., Lu, Y., Ruan, J., Qian, W., Wang, M., Huang, Q., Li, B., Xuan, Z., Cao, J., Asan, Wu, Z., Zhang, J., Cai, Q., Bai, Y., Zhao, B., Han, Y., Li, Y., Li, X., Wang, S., Shi, Q., Liu, S., Cho, W.K., Kim, J.Y., Xu, Y., Heller-Uszynska, K., Miao, H., Cheng, Z., Zhang, S., Wu, J., Yang, Y., Kang, H., Li, M., Liang, H., Ren, X., Shi, Z., Wen, M., Jian, M., Yang, H., Zhang, G., Yang, Z., Chen, R., Liu, S., Li, J., Ma, L., Liu, H., Zhou, Y., Zhao, J., Fang, X., Li, G., Fang, L., Li, Y., Liu, D., Zheng, H., Zhang, Y., Qin, N., Li, Z., Yang, G., Yang, S., Bolund, L., Kristiansen, K., Zheng, H., Li, S., Zhang, X., Yang, H., Wang, J., Sun, R., Zhang, B., Jiang, S., Wang, J., Du, Y., Li, S., 2009. The genome of the cucumber, Cucumis sativus L. Nat. Genet., 41: 1275–1281.

 

International Rice Genome Sequencing, P., 2005. The map-based sequence of the rice genome. Nature, 436: 793–800.

 

Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyere, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pe, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quetier, F., Wincker, P., French-Italian Public Consortium for Grapevine Genome, C., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463–467.

 

Liu, Y., Wang, D., Zhang, S., Zhao, H., 2015. Global expansion strategy of Chinese herbal tea beverage. Adv. J. Food Sci. Technol., 7: 739–745.

 

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods, 25: 402–408.

 

Lu, T., Dou, Y., Zhang, C., 2013. Fuzzy clustering of cpp family in plants with evolution and interaction analyses. BMC Bioinformatics, 14: S10.

 

Luo, M., Dennis, E.S., Berger, F., Peacock, W.J., Chaudhury, A., 2005. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) kinase gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 102: 17531–17536.

 

Lv, Q.R., Chen, C.S., Xu, Y.J., Hu, S.K., Wang, L., Sun, K., Chen, X., Li, X.H., 2017. Optimization of Agrobacterium tumefaciens-mediated transformation systems in tea plant (Camellia sinensis). Hortic Plant J, 3: 105–109.

 

Schmit, F., Cremer, S., Gaubatz, S., 2009. Lin54 is an essential core subunit of the dream/linc complex that binds to the cdc2 promoter in a sequence-specific manner. FEBS J., 276: 5703–5716.

 

Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C., Jackson, S.A., 2010. Genome sequence of the palaeopolyploid soybean. Nature, 463: 178–183.

 

Sijacic, P., Wang, W., Liu, Z., 2011. Recessive antimorphic alleles overcome functionally redundant loci to reveal TSO1 function in Arabidopsis flowers and meristems. PLoS Genet., 7: e1002352.

 
Song, X.Y., Zhang, Y.Y., Wu, F.C., Zhang, L., 2016. Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress. Genet. Mol. Res., 15 gmr.15038023.
 
Thompson, J.D., Gibson, T.J., Higgins, D.G., 2002. Multiple sequence alignment using clustalw and clustalx. Current Protocols Bioinform. Chapter 2: Unit 2 3.
 

Wang, M., Zhang, X., Li, Q., Chen, X., Li, X., 2019. Comparative transcriptome analysis to elucidate the enhanced thermotolerance of tea plants (Camellia sinensis) treated with exogenous calcium. Planta, 249: 775–786.

 

Wang, W., Sijacic, P., Xu, P., Lian, H., Liu, Z., 2018. Arabidopsis TSO1 and MYB3R1 form a regulatory module to coordinate cell proliferation with differentiation in shoot and root. Proc. Natl. Acad. Sci. U.S.A., 115: E3045–E3054.

 

Wang, W., Xin, H., Wang, M., Ma, Q., Wang, L., Kaleri, N.A., Wang, Y., Li, X., 2016. Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci, 7: 385.

 

Xia, E., Tong, W., Hou, Y., An, Y., Chen, L., Wu, Q., Liu, Y., Yu, J., Li, F., Li, R., Li, P., Zhao, H., Ge, R., Huang, J., Mallano, A.I., Zhang, Y., Liu, S., Deng, W., Song, C., Zhang, Z., Zhao, J., Wei, S., Zhang, Z., Xia, T., Wei, C., Wan, X., 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation of tea plants. Mol. Plant, 13: 1013–1026.

 

Xia, E.H., Zhang, H.B., Sheng, J., Li, K., Zhang, Q.J., Kim, C., Zhang, Y., Liu, Y., Zhu, T., Li, W., Huang, H., Tong, Y., Nan, H., Shi, C., Shi, C., Jiang, J.J., Mao, S.Y., Jiao, J.Y., Zhang, D., Zhao, Y., Zhao, Y.J., Zhang, L.P., Liu, Y.L., Liu, B.Y., Yu, Y., Shao, S.F., Ni, D.J., Eichler, E.E., Gao, L.Z., 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol. Plant, 10: 866–877.

 

Yang, Z., Gu, S., Wang, X., Li, W., Tang, Z., Xu, C., 2008. Molecular evolution of the cpp-like gene family in plants: insights from comparative genomics of Arabidopsis and rice. J. Mol. Evol., 67: 266–277.

 

Yao, Q.Y., Xia, E.H., Liu, F.H., Gao, L.Z., 2015. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the wrky gene family of cabbage, Brassica oleracea var. capitata. Gene, 557: 35–42.

 

Zhang, L., Zhao, H.K., Wang, Y.M., Yuan, C.P., Zhang, Y.Y., Li, H.Y., Yan, X.F., Li, Q.Y., Dong, Y.S., 2015. Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Genet. Mol. Res., 14: 1260–1268.

 

Zhang, Q.J., Li, W., Li, K., Nan, H., Shi, C., Zhang, Y., Dai, Z.Y., Lin, Y.L., Yang, X.L., Tong, Y., Zhang, D., Lu, C., Feng, L.Y., Wang, C.F., Liu, X.X., Huang, J.A., Jiang, W.K., Wang, X.H., Zhang, X.C., Eichler, E.E., Liu, Z.H., Gao, L.Z., 2020. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Mol. Plant, 13: 935–938.

 

Zhang, Y., Mao, L., Wang, H., Brocker, C., Yin, X., Vasiliou, V., Fei, Z., Wang, X., 2012. Genome-wide identification and analysis of grape aldehyde dehydrogenase (ALDH) gene superfamily. PLoS ONE, 7: e32153.

 

Zhao, M.Y., Cai, B.B., Jin, J.Y., Zhang, N., Jing, T.T., Wang, J.M., Pan, Y.T., Zhou, Z.X., Zhao, Y.F., Feng, Y.Y., Yu, F., Zhang, M.T., Li, Y.T., Liu, Z.H., Song, C.K., 2020. Cold stress-induced glucosyltransferase CsUGT78A15 is involved in the formation of eugenol glucoside in Camellia sinensis. Hortic Plant J, 6: 439–449.

 

Zhou, Y., Hu, L., Ye, S., Jiang, L., Liu, S., 2018. Genome-wide identification and characterization of cysteine-rich polycomb-like protein (CPP) family genes in cucumber (Cucumis sativus) and their roles in stress responses. Biologia, 73: 425–435.

Horticultural Plant Journal
Pages 469-478
Cite this article:
Nan H, Lin Y, Wang X, et al. Comprehensive genomic analysis and expression profiling of cysteine-rich polycomb-like transcription factor gene family in tea tree. Horticultural Plant Journal, 2021, 7(5): 469-478. https://doi.org/10.1016/j.hpj.2021.03.001

446

Views

7

Downloads

11

Crossref

12

Web of Science

13

Scopus

5

CSCD

Altmetrics

Received: 06 April 2020
Revised: 04 June 2020
Accepted: 10 July 2020
Published: 11 March 2021
© 2021 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS). Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return