AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Genome-wide identification and co-expression analysis of GDSL genes related to suberin formation during fruit russeting in pear

Pujuan ZhangHong ZhangJianke DuYushan Qiao( )
Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

Peer review under responsibility of Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Glycine-aspartic acid‑serine-leucine (GDSL) type lipases/esterases genes play critical roles in plant development and are related to the responses to abiotic and biotic stress. However, little is known about the GDSL family in pear (Pyrus spp.). Studies have shown GDSL-domain proteins play key roles in suberin deposition. Suberin deposition in the fruit epidermis, also called russeting, is an important defect that negatively affects consumer's appeal in some fruit species, such as pear, apple and grapevine. Fruit russeting is mainly associated with cuticle microcracking and suberin accumulation in the inner part of the epidermal cell walls. To gain insight into the role of the GDSL gene family in suberin deposition and russet development in pear, we performed a genome-wide characterization of the GDSL family, including their identification, chromosomal localization, phylogenetic relationships, and expression patterns, in different tissues/organs in pear. One hundred and thirteen GDSL-type lipases/esterases genes were identified in the pear genome, and a phylogenetic analysis revealed that GDSL family can be classified into four distinct groups. Thirty GDSL genes were co-expressed with five homolog pear genes of three well-known suberin biosynthesis Arabidopsis genes (AtGPAT5, AtASFT, and AtCYP86B1) in the transcriptional co-expression network during pear fruit development. Among the 30 co-expressed GDSL genes, twelve genes were further analyzed by quantitative Real-time PCR, and the results showed the expression levels of the 12 genes were different between the russet exocarp and green exocarp of sand pear at different fruit development stages. Our study provides a detailed overview of the GDSL gene family and lays the foundation for future functional characterization of GDSL genes in P. bretschneideri.

References

 

An, X., Dong, Z., Tian, Y., Xie, K., Wu, S., Zhu, T., Zhang, D., Zhou, Y., Niu, C., Ma, B., 2019. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol. Plant, 12: 343-359.

 

Bailey, T.L., Johnson, J., Grant, C.E., Noble, W.S., 2015. The meme suite. Nucleic Acids Res, 43: W39-W49.

 

Barros, M., Fleuri, L.F., Macedo, G.A., 2010. Seed lipases: sources, applications and properties-a review. Braz. J. Chem. Eng, 27: 15-29.

 

Beisson, F., Li-Beisson, Y., Pollard, M., 2012. Solving the puzzles of cutin and suberin polymer biosynthesis. Curr. Opin. Plant Biol, 15: 329-337.

 

Beisson, F., Li, Y., Bonaventure, G., Pollard, M., Ohlrogge, J.B., 2007. The acyltransferase gpat5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell, 19: 351-368.

 

Cao, Y., Han, Y., Meng, D., Abdullah, M., Li, D., Jin, Q., Lin, Y., Cai, Y., 2018. Systematic analysis and comparison of the PHD-finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development. Funct. Integr. Genomic, 18: 519-531.

 

Chen, M., Du, X., Zhu, Y., Wang, Z., Hua, S., Li, Z., Guo, W., Zhang, G., Peng, J., Jiang, L., 2012. Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ, 35: 2155-2169.

 

Clauss, K., Baumert, A., Nimtz, M., Milkowski, C., Strack, D., 2008. Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae. Plant J, 53: 802-813.

 

Compagnon, V., Diehl, P., Benveniste, I., Meyer, D., Schaller, H., Schreiber, L., Franke, R., Pinot, F., 2009. CYP86B1 is required for very long chain ω-hydroxy acid and α, ω-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol, 150: 1831-1843.

 

Enstone, J.E., Wale, M.C.J., Nguyen-Van-Tam, J.S., Pearson, J.C.G., 2003. Adverse medical events in British service personnel following anthrax vaccination. Vaccine, 21: 1348-1354.

 

Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C., Schreiber, L., 2005. Apoplastic polyesters in Arabidopsis surface tissues–a typical suberin and a particular cutin. Phytochemistry, 66: 2643-2658.

 

Gao, M., Yin, X., Yang, W., Lam, S.M., Tong, X., Liu, J., Wang, X., Li, Q., Shui, G., He, Z., 2017. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog, 13: e1006724.

 

Girard, A.L., Mounet, F., Lemaire-Chamley, M., Gaillard, C., Elmorjani, K., Vivancos, J., Runavot, J.L., Quemener, B., Petit, J., Germain, V., Rothan, C., Marion, D., Bakan, B., 2012. Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell, 24: 3119-3134.

 

Golisz, A., Sugano, M., Fujii, Y., 2008. Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. J. Exp. Bot, 59: 3099-3109.

 

Graça, J., Pereira, H., 2000. Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers. J. Agric. Food Chem, 48: 5476-5483.

 

Katagiri, T., Takahashi, S., Shinozaki, K., 2001. Involvement of a novel Arabidopsis phospholipase D, AtPLDδ, in dehydration-inducible accumulation of phosphatidic acid in stress signaling. Plant J, 26: 595-605.

 
Khanal, B.P., Grimm, E., Knoche, M., 2013. Russeting in apple and pear: a plastic periderm replaces a stiff cuticle. AoB Plants, 5 pls048.
 

Kolattukudy, P.E., 2001. Polyesters in higher plants. Adv. Biochem. Eng. Biot, 71: 1-49.

 

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., Marra, M.A., 2009. Circos: an information aesthetic for comparative genomics. Genome Res, 19: 1639-1645.

 

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol, 33: 1870-1874.

 

Kwon, S.J., Jin, H.C., Lee, S., Nam, M.H., Chung, J.H., Kwon, S.I., Ryu, C.M., Park, O.K., 2009. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J, 58: 235-245.

 

Lashbrooke, J., Cohen, H., Levy-Samocha, D., Tzfadia, O., Panizel, I., Zeisler, V., Massalha, H., Stern, A., Trainotti, L., Schreiber, L., Costa, F., Aharoni, A., 2016. MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell, 28: 2097-2116.

 

Legay, S., Guerriero, G., Deleruelle, A., Lateur, M., Evers, D., André, C.M., Hausman, J.F., 2015. Apple russeting as seen through the RNA-seq lens: strong alterations in the exocarp cell wall. Plant Mol. Biol, 88: 21-40.

 

Li, K.B., 2003. ClustalW-MPI: clustalW analysis using distributed and parallel computing. Bioinformatics, 19: 1585-1586.

 

Li, X.F., Li, X., Jia, B., Liu, L., Ye, Z.F., Heng, W., Zhu, L.W., 2012. Analysis of enzyme activity and lignin content and expression of CCoAOMT gene in the pericarp of 'Dangshan Suli' and its russet mutant. Acta Horticulturae Sinica, 39: 828-836. (in Chinese)

 

Lulai, E.C., Corsini, D.L., 1998. Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiol. Mol. Plant, 53: 209-222.

 

Lynch, M., Conery, J.S., 2000. The evolutionary fate and consequences of duplicate genes. Science, 290: 1151-1155.

 

Ma, Y., Shu, S., Bai, S., Tao, R., Qian, M., Teng, Y., 2018. Genome-wide survey and analysis of the TIFY gene family and its potential role in anthocyanin synthesis in Chinese sand pear (Pyrus pyrifolia). Tree Genet. Genomes, 14: 25.

 

Mahapatro, A., Kumar, A., Gross, R.A., 2004. Mild, solvent-free ω-hydroxy acid polycondensations catalyzed by candida antarctica lipase B. Biomacromolecules, 5: 62-68.

 

Molina, I., Bonaventure, G., Ohlrogge, J., Pollard, M., 2006. The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry, 67: 2597-2610.

 

Molina, I., Li-Beisson, Y., Beisson, F., Ohlrogge, J.B., Pollard, M., 2009. Identification of an Arabidopsis feruloyl-coenzyme a transferase required for suberin synthesis. Plant Physiol, 151: 1317-1328.

 

Molina, I., Ohlrogge, J.B., Pollard, M., 2008. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Plant J, 53: 437-449.

 

Naranjo, M.A., Forment, J., Roldán, M., Serrano, R., Vicente, O., 2006. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ, 29: 1890-1900.

 

Olsson, A., Lindström, M., Iversen, T., 2007. Lipase-catalyzed synthesis of an epoxy-functionalized polyester from the suberin monomer cis-9, 10-epoxy-18-hydroxyoctadecanoic acid. Biomacromolecules, 8: 757-760.

 

Oren, T., Tim, D., Sam, D.M., Klaas, V., Asaph, A., Yves, V.D.P., 2016. Coexpnetviz: comparative co-expression networks construction and visualization tool. Front. Plant Sci, 6: 1194.

 

Ouni, R., Zborowska, A., Sehic, J., Choulak, S., Iñaki Hormaza, J., Garkava-Gustavsson, L., Mars, M., 2020. Genetic diversity and structure of Tunisian local pear germplasm as revealed by SSR markers. Hortic Plant J, 6: 61-70.

 

Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R.L., Lee, Y., Zheng, L., Orvis, J., Haas, B., Wortman, J., Buell, C.R., 2006. The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res, 35: D883-D887.

 

Philippe, G., Gaillard, C., Petit, J., Geneix, N., Dalgalarrondo, M., Bres, C., Mauxion, J.P., Franke, R., Rothan, C., Schreiber, L., Marion, D., Bakan, B., 2016. Ester cross-link profiling of the cutin polymer of wild-type and cutin synthase tomato mutants highlights different mechanisms of polymerization. Plant Physiol, 170: 807-820.

 

Philippe, G., Sørensen, I., Jiao, C., Sun, X., Fei, Z., Domozych, D.S., Rose, J.K., 2020. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Curr. Opin. Plant Biol, 55: 11-20.

 

Pollard, M., Beisson, F., Li, Y., Ohlrogge, J.B., 2008. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci, 13: 236-246.

 

Rains, M.K., Gardiyehewa de Silva, N.D., Molina, I., 2017. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiol, 38: 340-361.

 

Saldanha, A.J., 2004. Java Treeview-extensible visualization of microarray data. Bioinformatics, 20: 3246-3248.

 

Schreiber, L., Franke, R., Hartmann, K.D., Ranathunge, K., Steudle, E., 2005a. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). J. Exp. Bot, 56: 1427-1436.

 

Schreiber, L., Franke, R., Hartmann, K., 2005b. Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta, 220: 520-530.

 

Serra, O., Soler, M., Hohn, C., Sauveplane, V., Pinot, F., Franke, R., Schreiber, L., Prat, S., Molinas, M., Figueras, M., 2009. CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm's water barrier function. Plant Physiol, 149: 1050-1060.

 

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13: 2498-2504.

 

Soler, M., Serra, O., Fluch, S., Molinas, M., Figueras, M., 2011. A potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation. Planta, 233: 933-945.

 

Soler, M., Serra, O., Molinas, M., Huguet, G., Fluch, S., Figueras, M., 2007. A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol, 144: 419-431.

 

Sousa, A.F., Silvestre, A.J.D., Gandini, A., Neto, C.P., 2012. Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems. High Perform. Polym, 24: 4-8.

 

Tung, C.W., Dwyer, K.G., Nasrallah, M.E., Nasrallah, J.B., 2005. Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol, 138: 977-989.

 

Updegraff, E.P., Zhao, F., Preuss, D., 2009. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex. Plant Reprod, 22: 197-204.

 

Upton, C., Buckley, J.T., 1995. A new family of lipolytic enzymes? Trends Biochem. Sci, 20: 178-179.

 

Ursache, R., De Jesus Vieira-Teixeira, C., Dénervaud Tendon, V., Gully, K., De Bellis, D., Schmid-Siegert, E., Andersen, T.G., Shekhar, V., Calderon, S., Pradervand, S., Nawrath, C., Geldner, N., Vermeer, J.E.M., 2021. GDSL-domain proteins have key roles in suberin polymerization and degradation. Nat. Plants, 7: 353-364.

 

Vishwanath, S.J., Delude, C., Domergue, F., Rowland, O., 2015. Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep, 34: 573-586.

 

Volokita, M., Rosilio-Brami, T., Rivkin, N., Zik, M., 2010. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants. Mol. Biol. Evol, 28: 551-565.

 

Wang, X.J., Cao, X.L., Hong, Y., 2005. Isolation and characterization of flower-specific transcripts in Acacia mangium. Tree Physiol, 25: 167-178.

 

Wang, Y.Z., Dai, M.S., Zhang, S.J., Shi, Z.B., 2014. Exploring candidate genes for pericarp russet pigmentation of sand pear (Pyrus pyrifolia) via RNA-seq data in two genotypes contrasting for pericarp color. PLoS ONE, 9: e83675.

 

Wang, Y., Dai, M., Cai, D., Shi, Z., 2020. Proteome and transcriptome profile analysis reveals regulatory and stress-responsive networks in the russet fruit skin of sand pear. Hortic. Res, 7: 16.

 

Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., Kissinger, J.C., Paterson, A.H., 2012. McscanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 40: e49.

 

Wang, Y., Zhang, W.Z., Song, L.F., Zou, J.J., Su, Z., Wu, W.H., 2008. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol, 148: 1201-1211.

 

Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.E., Rajashekar, C.B., Williams, T.D., Wang, X., 2002. Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem, 277: 31994-32002.

 

Wu, J., Wang, Z., Shi, Z., Zhang, S., Ming, R., Zhu, S., Khan, M.A., Tao, S., Korban, S.S., Wang, H., 2013a. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res, 23: 396-408.

 

Wu, J., Zhao, G., Yang, Y.N., Le, W.Q., Khan, M.A., Zhang, S.L., Gu, C., Huang, W.J., 2013b. Identification of differentially expressed genes related to coloration in red/green mutant pear (Pyrus communis L.). Tree Genet. Genomes, 9: 75-83.

 

Xue, H., Shi, T., Wang, F., Zhou, H., Yang, J., Wang, L., Wang, S., Su, Y., Zhang, Z., Qiao, Y., Li, X., 2017. Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method. Hortic. Res, 4: 17053.

 

Xue, H., Zhang, P., Shi, T., Yang, J., Wang, L., Wang, S., Su, Y., Zhang, H., Qiao, Y., Li, X., 2018. Genome-wide characterization of simple sequence repeats in Pyrus bretschneideri and their application in an analysis of genetic diversity in pear. BMC Genom, 19: 473.

 

Yang, Y.N., Zhao, G., Yue, W.Q., Zhang, S.L., Gu, C., Wu, J., 2013. Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear (Pyrus communis). Tree Genet. Genomes, 9: 1351-1360.

 

Yeats, T.H., Huang, W., Chatterjee, S., Viart, H.M.F., Clausen, M.H., Stark, R.E., Rose, J.K.C., 2014. Tomato cutin deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant J, 77: 667-675.

 

Yeats, T.H., Martin, L.B., Viart, H.M.F., Isaacson, T., He, Y., Zhao, L., Matas, A.J., Buda, G.J., Domozych, D.S., Clausen, M.H., Rose, J.K.C., 2012. The identification of cutin synthase: formation of the plant polyester cutin. Nat. Chem. Biol, 8: 609-611.

 

Youens-Clark, K., Buckler, E., Casstevens, T., Chen, C., DeClerck, G., Derwent, P., Dharmawardhana, P., Jaiswal, P., Kersey, P., Karthikeyan, A.S., 2010. Gramene database in 2010: updates and extensions. Nucleic Acids Res, 39: D1085-D1094.

 

Zhang, B., Zhang, L., Li, F., Zhang, D., Liu, X., Wang, H., Xu, Z., Chu, C., Zhou, Y., 2017. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nat. Plants, 3: 17017.

 

Zhang, C., Hao, Y.J., 2020. Advances in genomic, transcriptomic, and metabolomic analyses of fruit quality in fruit crops. Hortic. Plant J, 6: 361-371.

 

Zhang, J., Li, J., Xue, C., Wang, R., Zhang, M., Qi, K., Fan, J., Hu, H., Zhang, S., Wu, J., 2021. The variation of stone cell content in 236 germplasms of sand pear (Pyrus pyrifolia) and identification of related candidate genes. Hortic Plant J, 7: 108-116.

 

Zhang, L.S., 2019. Advance of horticultural plant genomes. Hortic Plant J, 5: 229-230.

 

Zhang, Z., Li, J., Zhao, X.Q., Wang, J., Wong, G.K.S., Yu, J., 2006. Kaks_calculator: calculating Ka and Ks through model selection and model averaging. Genom. Proteom Bioinf, 4: 259-263.

 

Zhao, X.J., Zhang, H.L., Hou, J., Zhang, J.P., Chen, S.D., Song, B.T., 2020. Overexpression of SbRFP1 gene improves salt tolerance of in vitro potato plantlets. Acta Horticulturae Sinica, 47: 381-389. (in Chinese)

 

Zhou, H., Cai, B.H., Lü, Z.Q., Gao, Z.H., Qiao, Y.S., 2016. Development, characterization, and annotation of potential simple sequence repeats by transcriptome sequencing in pears (Pyrus pyrifolia Nakai). Genet. Mol. Res, 15:gmr.15038683.

Horticultural Plant Journal
Pages 153-170
Cite this article:
Zhang P, Zhang H, Du J, et al. Genome-wide identification and co-expression analysis of GDSL genes related to suberin formation during fruit russeting in pear. Horticultural Plant Journal, 2022, 8(2): 153-170. https://doi.org/10.1016/j.hpj.2021.11.010

467

Views

17

Downloads

11

Crossref

10

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 16 July 2021
Revised: 28 October 2021
Accepted: 08 November 2021
Published: 20 November 2021
© 2021 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return