AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

An efficient transient gene expression system for protein subcellular localization assay and genome editing in citrus protoplasts

Wenhui YangaJiaqin RenaWanrong LiuaDan LiuaKaidong XieaFei Zhanga,bPengwei Wanga,bWenwu Guoa,bXiaomeng Wua( )
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression system is a powerful tool for gene functional characterization and CRISPR/Cas9 genome editing in higher plants, but it has not been widely used in citrus. In this study, the polyethylene glycol (PEG)-mediated method was optimized for citrus callus protoplast transfection, with an improved transfection efficiency of 68.4%. Consequently, the efficiency of protein subcellular localization assay was increased to 65.8%, through transient expression of the target gene in protoplasts that stably express the fluorescent organelle marker protein. The gene editing frequencies in citrus callus protoplasts reached 14.2% after transient expression of CRISPR/Cas9 constructs. We demonstrated that the intronic polycistronic tRNA-gRNA (inPTG) genome editing construct was functional in both the protoplast transient expression system and epicotyl stable transformation system in citrus. With this optimized protoplast transient expression system, we improved the efficiency of protein subcellular localization assay and developed the genome editing system in callus protoplasts, which provides an approach for prompt test of CRISPR vectors.

References

 

Bart, R., Chern, M., Park, C.J., Bartley, L., Ronald, P.C., 2006. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods, 2: 13.

 

Burris, K.P., Dlugosz, E.M., Collins, A.G., Stewart, C.N., Lenaghan, S.C., 2016. Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep, 35: 693–704.

 

Cai, X.D., Fu, J., Guo, W.W., 2017. Mitochondrial genome of callus protoplast has a role in mesophyll protoplast regeneration in citrus: evidence from transgenic GFP somatic homo-fusion. Hortic Plant J, 3: 177–182.

 

Cao, H.B., Zhang, J.C., Xu, J.D., Ye, J.L., Yun, Z., Xu, Q., Xu, Juan, Deng, X.X., 2012. Comprehending crystalline β-carotene accumulation by comparing engineered cell models and the natural carotenoid-rich system of citrus. J Exp Bot, 63: 4403–4417.

 

Chen, Y.T., Mao, W.W., Liu, T., Feng, Q.Q., Li, L., Li, B.B., 2020. Genome editing as a versatile tool to improve horticultural crop qualities. Hortic Plant J, 6: 372–384.

 

Di, Y.H., Sun, X.J., Hu, Z., Jiang, Q.Y., Song, G.H., Zhang, B., Zhao, S.S., Zhang, H., 2019. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochem Biophys Res Commun, 519: 819–823.

 

Ding, D., Chen, K.Y., Chen, Y.D., Li, H., Xie, K.B., 2018. Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol Plant, 11: 542–552.

 

Duan, Y.X., Guo, W.W., Meng, H.J., Tao, N.G., Li, D.D., Deng, X.X., 2007. High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis. Biol Plant, 51: 212–216.

 

Dutt, M., Mou, Z.L., Zhang, X.D., Tanwir, S.E., Grosser, J.W., 2020. Efficient CRISPR/Cas9 genome editing with citrus embryogenic cell cultures. BMC Biotechnol, 20: 58.

 

Engler, C., Youles, M., Gruetzner, R., Ehnert, T.M., Werner, S., Jones, J.D.G., Patron, N.J., Marillonnet, S., 2014. A golden gate modular cloning toolbox for plants. ACS Synth Biol, 3: 839–843.

 

Fleming, G.H., Olivares-Fuster, O., Del-Bosco, S.F., Grosser, J.W., 2000. An alternative method for the genetic transformation of sweet orange. Vitro Cell Dev Biol Plant, 36: 450.

 

Fu, X.Z., Khan, E.U., Hu, S.S., Fan, Q.J., Liu, J.H., 2011. Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot, 74: 106–113.

 

Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., Smith, H.O., 2009. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 6: 343–345.

 

Gong, J.L., Tian, Z., Qu, X.L., Meng, Q.N., Guan, Y.J., Liu, P., Chen, C.W., Deng, X.X., Guo, W.W., Cheng, Y.J., Wang, P.W., 2021. Illuminating the cells: transient transformation of citrus to study gene function and organelle activities related to fruit quality. Hortic Res, 8: 175.

 

Gou, Y.J., Li, Y.L., Bi, P.P., Wang, D.J., Ma, Y.Y., Hu, Y., Zhou, H.C., Wen, Y.Q., Feng, J.Y., 2020. Optimization of the protoplast transient expression system for gene functional studies in strawberry (Fragaria vesca). Plant Cell Tissue Organ Cult, 141: 41–53.

 

Grosser, J.W., Gmitter, F.G., 2011. Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tissue Organ Cult, 104: 343–357.

 

Guo, W.W., Duan, Y.X., Olivares-Fuster, O., Wu, Z.C., Arias, C.R., Burns, J.K., Grosser, J.W., 2005. Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep, 24: 482–486.

 

Guo, W.W., Xiao, S.X., Deng, X.X., 2013. Somatic cybrid production via protoplast fusion for citrus improvement. Sci Hortic, 163: 20–26.

 

Hao, Y., Zong, W.B., Zeng, D.C., Han, J.L., Chen, S.F., Tang, J.N., Zhao, Z., Li, X.J., Ma, K., Xie, X.R., Zhu, Q.L., Chen, Y.L., Zhao, X.C., Guo, J.X., Liu, Y.G., 2020. Shortened snRNA promoters for efficient CRISPR/Cas-based multiplex genome editing in monocot plants. Sci China Life Sci, 63: 933–935. (in Chinese)

 

Hu, B.W., Li, D.W., Liu, X., Qi, J.J., Gao, D.L., Zhao, S.Q., Huang, S.W., Sun, J.J., Yang, L., 2017. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant, 10: 1575–1578.

 

Huang, X.E., Wang, Y.C., Xu, J., Wang, N., 2020. Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations. Plant Mol Biol, 104: 297–307.

 

Jia, H., Orbovic, V., Wang, N., 2019. CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnol J, 17: 1928–1937.

 

Jia, H., Wang, N., 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 9: e93806.

 

Jia, H., Wang, N., 2020. Generation of homozygous canker-resistant citrus in the T0 generation using CRISPR-SpCas9p. Plant Biotechnol J, 18: 1990–1992.

 

Jia, H.H., Xu, Y.T., Yin, Z.P., Wu, X.M., Qing, M., Fan, Y.J., Song, X., Xie, K.D., Xie, Z.Z., Xu, Q., Deng, X.X., Guo, W.W., 2021. Transcriptomes and DNA methylomes in apomictic cells delineate nucellar embryogenesis initiation in citrus. DNA Res, dsab014.

 

Jiang, Y.Y., Chai, Y.P., Lu, M.H., Han, X.L., Lin, Q.P., Zhang, Y., Zhang, Q., Zhou, Y., Wang, X.C., Gao, C.X., Chen, Q.J., 2020. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol, 21: 257.

 

Jin, S., Lin, Q.P., Luo, Y.F., Zhu, Z.X., Liu, G.W., Li, Y.J., Chen, K.L., Qiu, J.L., Gao, C.X., 2021. Genome-wide specificity of prime editors in plants. Nat Biotechnol, 39: 1292–1299.

 

LeBlanc, C., Zhang, F., Mendez, J., Lozano, Y., Chatpar, K., Irish, V.F., Jacob, Y., 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J, 93: 377–386.

 

Li, W.T., Li, Z.X., Huang, J.Q., Xu, M.R., Zheng, Z., Deng, X.L., 2022. Characterization of Xanthomonas citri pv. citri from China based on spoligotyping. Hortic Plant J, 8: 727–736.

 

Lin, C.S., Hsu, C.T., Yang, L.H., Lee, L.Y., Fu, J.Y., Cheng, Q.W., Wu, F.H., Hsiao, H.C.W., Zhang, Y.S., Zhang, R., Chang, W.J., Yu, C.T., Wang, W., Liao, L.J., Gelvin, S.B., Shih, M.C., 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J, 16: 1295–1310.

 

Liu, H., Ding, Y.D., Zhou, Y.Q., Jin, W.Q., Xie, K.B., Chen, L.L., 2017. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant, 10: 530–532.

 

Liu, Q., Wang, C., Jiao, X.Z., Zhang, H.W., Song, L.L., Li, Y.X., Gao, C.X., Wang, K.J., 2019. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 62: 1–7.

 

Long, J.M., Liu, C.Y., Feng, M.Q., Liu, Y., Wu, X.M., Guo, W.W., 2018a. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. J Exp Bot, 69: 2979–2993.

 

Long, L., Guo, D.D., Gao, W., Yang, W.W., Hou, L.P., Ma, X.N., Miao, Y.C., Botella, J.R., Song, C.P., 2018b. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 14: 85.

 

Ma, C.F., Liu, M.C., Li, Q.F., Si, J., Ren, X.S., Song, H.Y., 2019. Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Hortic Plant J, 5: 164–169.

 

Ming, M.L., Ren, Q.R., Pan, C.T., He, Y., Zhang, Y.X., Liu, S.S., Zhong, Z.H., Wang, J.H., Malzahn, A.A., Wu, J., Zheng, X.L., Zhang, Y., Qi, Y.P., 2020. CRISPR-Cas12b enables efficient plant genome engineering. Native Plants, 6: 202–208.

 
Murashige, T., Tucker, D.H.P., 1969. Growth factors requirements of citrus tissue. In: Proceedings of the First International Citrus Symposium, 3. University of California, Riverside, CA, pp. 1155–1161.
 

Nelson, B.K., Cai, X., Nebenführ, A., 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants: fluorescent organelle markers. Plant J, 51: 1126–1136.

 
Omar, A.A., Dutt, M., Gmitter, F.G., Grosser, J.W., 2016. Somatic embryogenesis: still a relevant technique in citrus improvement. In: Germana, M.A., Lambardi, M. (Eds.), In vitro embryogenesis in higher plants, methods in molecular biology. Springer, New York, pp. 289–327.
 

Omar, A.A., Murata, M.M., El-Shamy, H.A., Graham, J.H., Grosser, J.W., 2018. Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice. Transgen Res, 27: 179–191.

 

Peng, A.H., Chen, S.C., Lei, T.G., Xu, L.Z., He, Y.R., Wu, L., Yao, L.X., Zou, X.P., 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J, 15: 1509–1519.

 

Ren, C., Liu, X.J., Zhang, Z., Wang, Y., Duan, W., Li, S.H., Liang, Z.C., 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep, 6: 32289.

 

Sparkes, I.A., Runions, J., Kearns, A., Hawes, C., 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc, 1: 2019–2025.

 

Sun, X.J., Hu, Z., Chen, R., Jiang, Q.Y., Song, G.H., Zhang, H., Xi, Y.J., 2015. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep, 5: 10342.

 

Tang, T., Yu, X.W., Yang, H., Gao, Q., Ji, H.T., Wang, Y.X., Yan, G.B., Peng, Y., Luo, H.F., Liu, K.D., Li, X., Ma, C.Z., Kang, C.Y., Dai, C., 2018. Development and validation of an effective CRISPR/Cas9 vector for efficiently isolating positive transformants and transgene-free mutants in a wide range of plant species. Front Plant Sci, 9: 1533.

 

Varkonyi-Gasic, E., Wang, T., Voogd, C., Jeon, S., Drummond, R.S.M., Gleave, A.P., Allan, A.C., 2019. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnol J, 17: 869–880.

 

Wang, G.X., Zong, M., Liu, D., Wu, Y.G., Tian, S.W., Han, S., Guo, N., Duan, M.M., Miao, L.M., Liu, F., 2022. Efficient generation of targeted point mutations in the Brassica oleracea var. botrytis genome via a modified CRISPR/Cas9 system. Hortic Plant J, 8: 527–530.

 

Wang, K., Gao, E.L., Liu, D., Wu, X.M., Wang, P.W., 2020. The ER network, peroxisomes and actin cytoskeleton exhibit dramatic alterations during somatic embryogenesis of cultured citrus cells. Plant Cell Tissue Organ Cult, 148: 259–270.

 

Wang, R., Fang, Y.N., Wu, X.M., Qing, M., Li, C.C., Xie, K.D., Deng, X.X., Guo, W.W., 2020. The miR399-CsUBC24 module regulates reproductive development and male fertility in citrus. Plant Physiol, 183: 1681–1695.

 

Wang, Y., Liu, X.J., Ren, C., Zhong, G.Y., Yang, L., Li, S.H., Liang, Z.C., 2016. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biol, 16: 96.

 

Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., Kim, J.S., 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol, 33: 1162–1164.

 

Xiao, S.X., Biswas, M.K., Li, M.Y., Deng, X.X., Xu, Q., Guo, W.W., 2014. Production and molecular characterization of diploid and tetraploid somatic cybrid plants between male sterile Satsuma mandarin and seedy sweet orange cultivars. Plant Cell Tissue Organ Cult, 116: 81–88.

 

Xie, K.B., Minkenberg, B., Yang, Y.N., 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 112: 3570–3575.

 

Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., Chen, Q.J., 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol, 14: 327.

 

Yan, L.H., Wei, S.W., Wu, Y.R., Hu, R.L., Li, H.J., Yang, W.C., Xie, Q., 2015. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant, 8: 1820–1823.

 

Yang, F., Yang, Q.S., Gao, Y.H., Ma, Y.J., Xu, Y., Teng, Y.W., Bai, S.L., 2021. Establishment of dual-cut CRISPR/Cas9 gene editing system in pear calli. Acta Hortic Sin, 48: 873–882. (in Chinese)

 

Yang, L.S., Guo, Y., Hu, Y., Wen, Y.Q., 2020. CRISPR/Cas9-mediated mutagenesis of VviEDR2 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Acta Hortic Sin, 47: 623–634. (in Chinese)

 
Yang, W., 2016. Establishment and Application of Citrus Protoplast Transient Transformation System [M.D.]. Huazhong Agricultural University, Wuhan.
 

Ye, S.W., Chen, G., Kohnen, M.V., Wang, W.J., Cai, C.Y., Ding, W.S., Wu, C., Gu, L.F., Zheng, Y.S., Ma, X.Q., Lin, C.T., Zhu, Q., 2020. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnol J, 18: 1501–1503.

 

Yoo, S.D., Cho, Y.H., Sheen, J., 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2: 1565–1572.

 

Zhang, F., LeBlanc, C., Irish, V.F., Jacob, Y., 2017. Rapid and efficient CRISPR/Cas9 gene editing in citrus using the YAO promoter. Plant Cell Rep, 36: 1883–1887.

 

Zhang, F., Rossignol, P., Huang, T.B., Wang, Y.W., May, A., Dupont, C., Orbovic, V., Irish, V.F., 2020. Reprogramming of stem cell activity to convert thorns into branches. Curr Biol, 30: 2951–2961.

 

Zhu, C.Q., Zheng, X.J., Huang, Y., Ye, J.L., Chen, P., Zhang, C.L., Zhao, F., Xie, Z.Z., Zhang, S.Q., Wang, N., Li, H., Wang, L., Tang, X.M., Chai, L.J., Xu, Q., Deng, X.X., 2019. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii). Plant Biotechnol J, 17: 2199–2210.

 

Zhu, F., Luo, T., Liu, C.Y., Wang, Y., Yang, H.B., Yang, W., Zheng, L., Xiao, X., Zhang, M.F., Xu, R.W., Xu, J.G., Zeng, Y.L., Xu, J., Xu, Q., Guo, W.W., Larkin, R.M., Deng, X.X., Cheng, Y.J., 2017. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulata. New Phytol, 216: 178–192.

 

Zou, X.P., Fan, D., Peng, A.H., He, Y.R., Xu, L.Z., Lei, T.G., Yao, L.X., Li, Q., Luo, K.M., Chen, S.C., 2019. CRISPR/Cas9-mediated editing of multiple sites in the citrus CsLOB1 promoter. Acta Hortic Sin, 46: 337–344. (in Chinese)

Horticultural Plant Journal
Pages 425-436
Cite this article:
Yang W, Ren J, Liu W, et al. An efficient transient gene expression system for protein subcellular localization assay and genome editing in citrus protoplasts. Horticultural Plant Journal, 2023, 9(3): 425-436. https://doi.org/10.1016/j.hpj.2022.06.006

464

Views

40

Downloads

12

Crossref

12

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 22 April 2022
Revised: 10 June 2022
Accepted: 17 June 2022
Published: 23 June 2022
© 2022 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return