AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Genome-wide identification and expression analysis of NIN-like Protein (NLP) genes reveals their potential roles in the response to nitrate signaling in watermelon

Gaopeng Yuan1Dexi Sun1Yifan WangGuolin AnWeihua LiWenjing SiJunpu Liu( )Yingchun Zhu( )
Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

To balance the relationship between high yield and low nitrogen supply, the nitrogen utilization efficiency of watermelon needs to be improved urgently. Nodule inception-like Protein (NLP) transcription factors play a key node role in nitrate response and growth and development of plant, however, comprehensive analysis of the NLP gene family in watermelon is unclear. This study explored the functional classification, evolutionary characteristics, and expression profile of the ClNLP gene family. Three ClNLPs were categorized into three groups according to their gene structure and phylogeny. All of them contained the conserved RWP-RK and PB1 domains. Evolutionary analysis of ClNLPs revealed that ClNLP1 and ClNLP3 underwent strong purified selection. In addition, cis-acting elements related to plant hormones and abiotic stresses were present in the ClNLP promoter. According to tissue-specific analysis ClNLP was widely expressed in roots, stems, leaves, flowers and fruits, and ClNLP1 was significantly induced in the roots of different nitrogen utilization varieties under different nitrate nitrogen supply. The SRTING functional protein association network suggested that ClNLP1 is associated with most genes, such as NRT1.1, NRT2.1, NIA1, and NIR1, and the dual-luciferase reporter assay found that ClNLP1 positively regulates the expression of ClNRT2.1. We speculated that ClNLP1 might play a central role in regulating the response of watermelon to nitrate nitrogen.

References

 

Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., Decastroe, E., Duvaud, S., Flege, l.V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I., Stockinger, H., 2012. Expasy: Sib bioinformatics resource portal. Nucleic Acids Res, 40: 597-603.

 

Bao, S.D., 2000. Soil and Agricultural Chemistry Analysis China. Agriculture Press, Beijing. (in Chinese)

 

Camargo, A., Liamas, A., Schnell, R.A., Higuera, J.J., González-Ballester, D., Lefebvre, P.A., Fernández, E., Galván, A., 2007. Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell, 19: 3491-3503.

 

Cao, X.J., Lu, X.P., Xiong, J., Li, J., Xie, S.X., 2018. The Poncirus trifoliata (L.) raf. Nin-like protein transcription factors responses to drought stress and bind the nitrate-responsive cis-element. Sci Agric Sin, 51: 3370-3378. (in Chinese)

 

Chardin, C., Girin, T., Roudier, F., Meyer, C., Krapp, A., 2014. The plant rwp-rk transcription factors: key regulators of nitrogen responses and of gametophyte development. J Exp Bot, 65: 5577-5587.

 

Chen, C., Chen, H., Zhang, Y., Thomas, H., Frank, M., He, Y., Xia, R., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13: 1194-1202.

 

Chou, K.C., Shen, H.B., 2010. Cell-ploc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Sci, 2: 1090-1103.

 

Forde, B., 2014. Nitrogen signaling pathways shaping root system architecture: an update. Curr Opin Plant Biol, 21: 30-36.

 

Ge, M., Liu, Y., Jiang, L., Wang, Y., Lv, Y., Zhou, L., Liang, S., Bao, H., Zhao, H., 2018. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regul, 84: 95-105.

 

Ge, M., Wang, Y., Liu, Y., Jiang, L., Zhao, H., 2020. The nin-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize. Plant J, 102: 535-568.

 

Ge, M., Wang, Y.C., Ning, L.H., Hu, M.M., Shi, X., Zhao, H., 2021. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize. Acta Agron Sin, 47: 807-813. (in Chinese)

 

Guan, P., Ripoll, J.J., Wang, R., Vuong, L., Bailey-Steinitz, L.J., Ye, D., Crawford, N.M., 2017. Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci USA, 114: 201615676.

 

Guo, S.G., Zhang, J.G., Sun, H., Salse, J., Lucas, W.J., Zhang, H., Zheng, Y., Mao, L.Y., Ren, Y., Wang, Z.W., 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet, 45: 51-82.

 

Gutiérrez, R.A., Lejay, L.V., Dean, A., Chiaromonte, F., Shasha, D.E., Coruzzi, G.M., 2007. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol, 8: R7.

 
Hao, J.F., 2020. Research on Efficient Watermelon Production Technology Based on the Fertilizer Demand Law and Plant Growth regulator[M.D.Dissertation]. Zhejiang University, Hangzhou. (in Chinese)
 

Hao, P.Q., Zhao, Z.S., Wen, Y.J., Qu, M.Q., Li, W.C., Ma, F.M., 2016. Effects of nitrogen application rate on yield, quality and nitrogen utilization efficiency of protected culturation watermelon under drip irrigation. Shaanxi J Agric Sci, 62: 25-27. (in Chinese)

 

Ho, C.H., Lin, S., Hu, H.C., Tsay, Y.F., 2009. Chl1 functions as a nitrate sensor in plants. Cell, 138: 1184-1194.

 

Hu, B., Wang, W., Ou, S.J., Tang, J.Y., Li, H., Che, R.H., Zhang, Z., Chai, X., Wang, H.R., Wang, Y.Q., Liang, C.Z., Liu, L.C., Piao, Z.Z., Deng, Q.Y., Deng, K., Xu, C., Liang, Y., Zhang, L.H., Li, L.G., Chu, C.C., 2018. Variation in NRT1.1b contributes to nitrate-use divergence between rice subspecies. Nat Genet, 47: 834-838.

 

Hurst, L., 2002. The ka/ks ratio: diagnosing the form of sequence evolution. Trends Genet, 18: 486.

 

Kenneth, J.L., Thomas, D.S., 2002. Analysis of relative gene expression data using real-time quantitative pcr and the 2-ΔΔct method. Methods, 25: 402-408.

 

Kiba, T., Krapp, A., 2016. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol, 57: 707-714.

 

Konishi, M., Yanagisawa, S., 2010. Identification of a nitrate-responsive cis-element in the Arabidopsis nir1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response. Plant J, 63: 269-282.

 

Konishi, M., Yanagisawa, S., 2011. The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene ,NIA1, in Arabidopsis. Plant Cell Physiol, 52: 824-836.

 

Konishi, M., Yanagisawa, S., 2013. Arabidopsis Nin-like transcription factors have a central role in nitrate signalling. Nat Commun, 4: 1617.

 

Konishi, M., Yanagisawa, S., 2014. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. J Exp Bot, 65: 5589-5600.

 

Konishi, M., Yanagisawa, S., 2019. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression. BMC Plant Biol, 19: 90.

 

Kumar, A., Batra, R., Gahlaut, V., Gautam, T., Kumar, S., Sharma, M., Tyagi, S., Singh, K., Balyan, H., Pandey, R., Gupta, P., 2018. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.). PLoS ONE, 13: e0208409.

 

Kumar, R., Tyagi, A.K., Sharma, A.K., 2011. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genom, 285: 245-260.

 

Li, Z., Wang, R., Gao, Y., Wang, C., Zhao, L., Xu, N., Chen, K.E., Qi, S., Zhang, M., Tsay, Y.F., 2017. The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1. New Phytol, 216: 1205-1222.

 

Lian, X.Y., Zhao, X.Y., Zhao, Q., Wang, G.L., Li, Y.Y., Hao, Y.J., 2021. MdDREB2a in apple is involved in the regulation of multiple abiotic stress responses. Hortic Plant J, 7: 197-208.

 

Liang, Z.X., Sun, M.D., Wu, Y., Tian, H.Q., Du, R.R., Zhao, Y.Y., Liu, S.Z., 2021. Utilization of 15N-urea applied in spring for pear trees and its residual in soil and loss from the no-bearing stage to the young bearing stage. Acta Hortic Sin, 48: 137-145. (in Chinese)

 

Lin, J.S., Li, X., Luo, Z.L., Mysore, K.S., Wen, J., Xie, F., 2018. Nin interacts with nlps to mediate nitrate inhibition of nodulation in Medicago truncatula. Nat Plants, 4: 942-952.

 

Liu, K.H., Niu, Y., Konishi, M., Wu, Y., Du, H., Chung, H.S., Li, L., Boudsocq, M., Mccormack, M., Maekawa, S., 2017. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature, 545: 311-316.

 

Liu, K.H., Tsay, Y.F., 2014. Switching between the two action modes of the dual-affinity nitrate transporter Chl1 by phosphorylation. EMBO J, 22: 1005-1013.

 

Liu, M., Wei, C., Fan, Y., Sun, W., Qu, C., Kai, Z., Liu, L., Xu, X., Tang, Z., Li, J., 2018. Genome-wide identification and characterization of nodule-inception-like protein (NLP) family genes in Brassica napus. Int J Mol Sci, 19: 2270.

 

Liu, M., Zhi, X., Wang, Y., Wang, Y., 2021a. Genome-wide survey and expression analysis of NIN-like protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato. BMC Plant Biol., 21: 347.

 
Liu, N., 2013. Mechanism of High Nitrogen a Bsorption and Utilization Efficiency in Watermelon [M.D.Dissertation]. Zhejiang University, Hangzhou. (in Chinese)
 

Liu, Z.X., Xing, Y., Wu, X.X., Tian, G., Zhu, Z.L., Ge, S.F., Jiang, Y.M., 2021b. Effects of nitrogen application position on fine root distribution, nitrogen absorption, yield and quality of dwarfing interstock apple trees. Acta Hortic Sin, 48: 219-232. (in Chinese)

 

Luo, J., Zhou, J., Masclaux-Daubresse, C., Wang, N., Wang, H., Zheng, B., 2019. Morphological and physiological responses to contrasting nitrogen regimes in Populus cathayana is linked to resources allocation and carbon/nitrogen partition. Environ Exp Bot, 162: 247-255.

 

Mao, G.F., Wang, Q., Huang, Z.Z., Lu, J.Z., 2007. Ecological effect of reducing chemical fertilizer application under protected culture. Acta Agric Shanghai, 1: 52-58. (in Chinese)

 

Marchive, C., Roudier, F.O., Castaings, L., Bréhaut, V., Blondet, E., Colot, V., Meyer, C., Krapp, A., 2013. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun, 4: 1713.

 

Mu, X., Chen, Q., Wu, X., Chen, F., Yuan, L., Mi, G., 2018. Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environ Exp Bot, 150: 198-208.

 

Mu, X.H., Chen, Q.W., Chen, F.J., Yuan, L.X., Mi, G.H., 2017. A RNA-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf. Int J Mol Sci, 18: 2624.

 

Remans, T., Nacry, P., Pervent, M., Girin, T., Tillard, P., Lepetit, M., Gojon, A., 2006. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in arabidopsis. Plant Physiol, 140: 909-921.

 

Sato, T., Maekawa, S., Konishi, M., Yoshioka, N., Sasaki, Y., Maeda, H., Ishida, T., Kato, Y., Yamaguchi, J., Yanagisawa, S., 2016. Direct transcriptional activation of bt genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis. Biochem Biophys Res Commun, 483: 380-386.

 

Schauser, L., Roussis, A., Stiller, J., Stougaard, J., 1999. A plant regulator controlling development of symbiotic root nodules. Nature, 402: 191-195.

 

Schauser, L., Wieloch, W., Stougaard, J., 2005. Evolution of nin-like proteins in Arabidopsis , rice, and Lotus japonicus. J Mol Evol, 60: 229-237.

 

Scheible, W., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M., Stitt, M., 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol, 136: 2483-2499.

 

Schroeder, J., Delhaize, E., Frommer, W., Guerinot, M., Harrison, M., Herrera-Estrella, L., Horie, T., Kochian, L., Munns, R., Nishizawa, N., 2013. Using membrane transporters to improve crops for sustainable food production. Nature, 497: 60-66.

 

Shi, X.B., Wang, X.D., Wang, B.L., Wang, Z.Q., Ji, X.H., Wang, X.L., Liu, F.Z., Wang, H.B., 2021. Requirement rule of nitrogen, phosphorus, potassium, calcium and magnesium of 'Red Globe' grapevine. Acta Hortic Sin, 48: 2146-2160. (in Chinese)

 

Sudhir, K., Glen, S., Koichiro, T., 2016. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 33: 1870-1874.

 
Sumimoto, H., Kamakura, S., Ito, T., 2007. Structure and Function of the PB1 Domain, a Protein Interaction Module Conserved in Animals, Fungi, Amoebas, and Plants. Science's Stke, p. re6, 2007.
 

Suzuki, W., Konishi, M., Yanagisawa, S., 2013. The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the Nin transcription factor. Plant Signal. Behav, 8: e25975.

 

Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T., Legeay, M., Fang, T., Bork, P., Jensen, L.J., von Mering, C., 2021. The string database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res, 49: 605-612.

 
Tan, J., 2019. Cloning and Functional Analyzation of Nitrate Transporter Gene from Hygrophila stricta [M.D.Dissertation]. Chinese Academy of Agricultural Sciences, Beijing. (in Chinese)
 

Tegeder, M., Masclaux-Daubresse, C., 2018. Source and sink mechanisms of nitrogen transport and use. New Phytol, 217: 35-53.

 

Thompson, J.D., Gibson, T.J., Higgins, D.G., 2002. Multiple sequence alignment using clustal w and clustal x. Curr Protoc Bioinf, 1: 2.3.1-2.3.22.

 

Undurraga, S., Ibarra-Henríquez, C., Fredes, I., Álvarez, J., Gutiérrez, R.A., 2017. Nitrate signaling and early responses in Arabidopsis roots. J Exp Bot, 68: 2541-2551.

 

Wan, T., Xue, H., Tong, Y., 2017. Transgenic approaches for improving use efficiency of nitrogen, phosphorus and potassium in crops. J Integr Agric, 16: 2657-2673.

 

Wang, R., Guegler, K., Crawford, L.B.M., 2000. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell, 12: 1491-1510.

 

Wang, X., Chen, X., Li, H.L., Zhang, F.J., Zhao, X., Han, Y., Wang, X., Hao, Y., 2019. Genome-wide identification and expression pattern analysis of NLP (nin-like protein) transcription factor gene family in apple. Sci Agric Sin, 52: 4333-4349. (in Chinese)

 

Wu, J., Zhang, Z.S., Xia, J.Q., Alfatih, A., Xiang, C.B., 2020. Rice nin-like protein 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol J, 19: 448-461.

 

Wu, X.Y., Xu, Z.R., Qu, C., Li, W., Qun, Q., Liu, G., 2014. Genome-wide identification and characterization of NLP gene family in Populus trichocarpa. Bull Bot Res, 31: 37-43. (in Chinese)

 

Yan, D., Easwaran, V., Chau, V., Okamoto, M., Ierullo, M., Kimura, M., Endo, A., Yano, R., Pasha, A., Gong, A., Bi, Y., Provart, N., Guttman, D., Krapp, A., Rothstein, S.J., Nambara, E., 2016. Nin-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat Commun, 7: 13179.

 

Yanagisawa, S., 2014. Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Sci, 229: 167-171.

 
Yu J. Xuan W. Tian Y.L. Fan L. Sun J. Tang W.J. Chen G.M. Wang B.X. Liu Y. Wu W. Liu X.L. Jiang X.Z. Zhou C. Dai Z.Y. Xu D.Y. Wang C.M. Wan J.M. Enhanced OsNLP4-OsNIR cascade confers nitrogen use efficiency by promoting tiller number in ricePlant Biotechnol J20211916717610.1111/pbi.13450

Yu, J., Xuan, W., Tian, Y.L., Fan, L., Sun, J., Tang, W.J., Chen, G.M., Wang, B.X., Liu, Y., Wu, W., Liu, X.L., Jiang, X.Z., Zhou, C., Dai, Z.Y., Xu, D.Y., Wang, C.M., Wan, J.M., 2021. Enhanced OsNLP4-OsNIR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J, 19: 167-176.

 

Yu, L.H., Wu, J., Tang, H., Yuan, Y., Wang, S.M., Wang, Y.P., Zhu, Q.S., Li, S.G., Xiang, C.B., 2016. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Sci Rep, 6: 27795.

 
Yuan, G.P., 2020. Screening of Key Genes for Apple Russeting Formation and Function Identification of MdLIM11 Gene [M.D.Dissertation]. Chinese Academy of Agricultural Sciences, Beijing. (in Chinese)
 

Yuan, G.P., Bian, S.X., Han, X.L., He, S.S., Liu, K., Zhang, C.X., Cong, P.H., 2019. An integrated transcriptome and proteome analysis reveals new insights into russeting of bagging and non-bagging “golden delicious” apple. Int J Mol Sci, 20: 4462.

 

Yuan, G.P., Liu, J.P., An, G.L., Li, W.H., Si, W.J., Sun, D.X., Zhu, Y.C., 2021. Genome-wide identification and characterization of the trehalose-6-phosphate synthetase (TPS) gene family in watermelon (Citrullus lanatus) and their transcriptional responses to salt stress. Int J Mol Sci, 23: 276.

 

Zhang, H., Forde, B.G., 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279: 407-409.

 

Zhang, H.M., Forde, B.G., 2000. Regulation of Arabidopsis root development by nitrate availability. J Exp Bot, 51: 51-59.

 

Zhao, L., Zhang, W., Yang, Y., Li, Z., Li, N., Qi, S., Crawford, N.M., Wang, Y., 2018. The Arabidopsis NLP7 gene regulates nitrate signaling via NRT1.1–dependent pathway in the presence of ammonium. Sci Rep, 8: 1487.

 
Zhao, L.F., 2017. The molecular mechanisms of NRG2 and NLP7 regulating NRT1.1. In: Arabidopsis [M.D.Dissertation]. Shangdong Agricultural University, Taian. (in Chinese)
 

Zhu, M., Zhang, Y., Yang, Y., Yang, X., Wang, C., Deng, Y., Zhao, L., Zhang, L., Qin, L., Yang, L., 2021. Identification and expression analysis of nlp transcription factor family of Chenopodium quinoa willd. Acta Agricult Boreali Sin, 36: 37-46. (in Chinese)

Horticultural Plant Journal
Pages 602-614
Cite this article:
Yuan G, Sun D, Wang Y, et al. Genome-wide identification and expression analysis of NIN-like Protein (NLP) genes reveals their potential roles in the response to nitrate signaling in watermelon. Horticultural Plant Journal, 2022, 8(5): 602-614. https://doi.org/10.1016/j.hpj.2022.06.010

438

Views

13

Downloads

8

Crossref

6

Web of Science

7

Scopus

2

CSCD

Altmetrics

Received: 18 January 2022
Revised: 18 April 2022
Accepted: 24 May 2022
Published: 27 June 2022
© 2022 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return