AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Polyploidy events shaped the expansion of transcription factors in Cucurbitaceae and exploitation of genes for tendril development

Yu Zhanga,1Yingchao Zhanga,1Bing Lib,1Xiao TanaChangping ZhuaTong WuaShuyan FengaQihang YangaShaoqin ShenaTong YuaZhuo LiuaXiaoming Songa,c,d( )
College of Life Sciences/Center for Genomics and Bio-computing, North China University of Science and Technology, Tangshan, Hebei 063210, China
Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, China
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

1 The authors contributed equally to the work.

Show Author Information

Abstract

Cucurbitaceae is one of the most important plant families distributed worldwide. Transcription factors (TFs) regulate plant growth at the transcription level. Here, we performed a systematic analysis of 42 641 TFs from 63 families in 14 Cucurbitaceae and 10 non-cucurbit species. Whole-genome duplication (WGD) was the dominant event type in almost all Cucurbitaceae plants. The TF families were divided into 1 210 orthogroups (OGs), of which, 112 were unique to Cucurbitaceae. Although the loss of several gene families was detected in Cucurbitaceae, the gene families expanded in five species that experienced a WGD event comparing with grape. Our findings revealed that the recent WGD events that had occurred in Cucurbitaceae played important roles in the expansion of most TF families. The functional enrichment analysis of the genes that significantly expanded or contracted uncovered five gene families, AUX/IAA, NAC, NBS, HB, and NF-YB. Finally, we conducted a comprehensive analysis of the TCP gene family and identified 16 tendril-related (TEN) genes in 11 Cucurbitaceae species. Interestingly, the characteristic sequence changed from CNNFYFP to CNNFYLP in the TEN gene (Bhi06M000087) of Benincasa hispida. Furthermore, we identified a new characteristic sequence, YNN, which could be used for TEN gene exploitation in Cucurbitaceae. In conclusion, this study will serve as a reference for studying the relationship between gene family evolution and genome duplication. Moreover, it will provide rich genetic resources for functional Cucurbitaceae studies in the future.

References

 

Ahmad, H., Rahman, M., Ahmar, S., Fiaz, S., Azeem, F., Shaheen, T., Ijaz, M., Bukhari, S., Khan, S., Mora-Poblete, F., 2021. Comparative genomic analysis of MYB transcription factors for cuticular wax biosynthesis and drought stress tolerance in Helianthus annuus L. Saudi J Biol Sci, 28: 5693-5703.

 

Aköz, G., Nordborg, M., 2019. The aquilegia genome reveals a hybrid origin of core eudicots. Genome Biol, 20: 1-12.

 

Barrera-Redondo, J., Ibarra-Laclette, E., Vázquez-Lobo, A., Gutiérrez-Guerrero, Y., de la Vega, G., Piñero, D., Montes-Hernández, S., Lira-Saade, R., Eguiarte, L., 2019. The genome of Cucurbita argyrosperma (silver-seed gourd) reveals faster rates of protein-coding gene and long noncoding RNA turnover and neofunctionalization within cucurbita. Mol Plant, 12: 506-520.

 

Blanc, G., Barakat, A., Guyot, R., Cooke, R., Delseny, M., 2000. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell, 12: 1093-1101.

 

Chen, C., Chen, H., Zhang, Y., Thomas, H., Frank, M., He, Y., Xia, R., 2020. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13: 1194-1202.

 

Chomicki, G., Schaefer, H., Renner, S., 2020. Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytol, 226: 1240-1255.

 

Conant, G., Birchler, J., Pires, J., 2014. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr Opin Plant Biol, 19: 91-98.

 

Crawford, B., Nath, U., Carpenter, R., Coen, E., 2004. Cincinnata controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol, 135: 244-253.

 

De Bie, T., Cristianini, N., Demuth, J., Hahn, M., 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 22: 1269-1271.

 

Dinan, L., Whiting, P., Sarker, S., Kasai, R., Yamasaki, K., 1997. Cucurbitane-type compounds from Hemsleya carnosiflora antagonize ecdysteroid action in the Drosophila melanogaster BII cell line. Cell Mol Life Sci, 53: 271-274.

 

Duan, A., Yang, X., Feng, K., Liu, J., Xu, Z., Xiong, A., 2020. Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.). Comput Biol Chem, 84: 107186.

 

Efroni, I., Blum, E., Goldshmidt, A., Eshed, Y., 2008. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell, 20: 2293-2306.

 
Emms, D., Kelly, S., 2018. STAG: species tree inference from all genes. BioRxiv. https://doi.org/10.1101/267914.
 

Emms, D., Kelly, S., 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol, 20: 1-14.

 

Fei, Q., Xia, R., Meyers, B.C., 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell, 25: 2400-2415.

 

Floyd, Sandra K., Bowman, John L., 2007. The ancestral developmental tool kit of land plants. Int J Plant Sci, 168: 1-35.

 

Fu, A., Wang, Q., Mu, J., Ma, L., Wen, C., Zhao, X., Gao, L., Li, J., Shi, K., Wang, Y., 2021. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. Horticult Res, 8: 1-15.

 

Gan, D., Zhuang, D., Ding, F., Yu, Z., Zhao, Y., 2013. Identification and expression analysis of primary auxin-responsive AUX/IAA gene family in cucumber (Cucumis sativus). J Genet, 92: 513-521.

 

Gao, Z., Zhang, H., Cao, C., Han, J., Li, H., Ren, Z., 2020. QTL mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines. Hortic Plant J, 6: 132-144.

 

Han, M., Thomas, G., Lugo-Martinez, J., Hahn, M., 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol, 30: 1987-1997.

 

Holland, P., 2013. Evolution of homeobox genes. Wiley Interdiscipl Rev Dev Biol, 2: 31-45.

 

Howarth, D., Donoghue, M.J., 2006. Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots. Proc Natl Acad Sci USA, 103: 9101-9106.

 

Jaillon, O., Aury, J., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyere, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pe, M., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quetier, F., Wincker, P., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463-467.

 

Jin, J., Tian, F., Yang, D.C., Meng, Y.Q., Kong, L., Luo, J., Gao, G., 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 45: D1040-D1045.

 

Karrar, E., Sheth, S., Navicha, W.B., Wei, W., Hassanin, H., Abdalla, M., Wang, X., 2019. A potential new source: nutritional and antioxidant properties of edible oils from Cucurbit seeds and their impact on human health. J Food Biochem, 43: e12733.

 

Katoh, K., Standley, D.M., 2013. Mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 30: 772-780.

 

Kelly, S., Maini, P.K., 2013. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments. PLoS ONE, 8: e58537.

 

Kiss, J.Z., 2006. Up, down, and all around: how plants sense and respond to environmental stimuli. Proc Natl Acad Sci USA, 103: 829-830.

 

Kosugi, S., Ohashi, Y., 2002. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J, 30: 337-348.

 

Kumar, S., Stecher, G., Suleski, M., Hedges, S.B., 2017. Timetree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol, 34: 1812-1819.

 

Lehti-Shiu, M.D., Panchy, N., Wang, P., Uygun, S., Shiu, S.-H., 2017. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. Biochim Biophys Acta (BBA) Gene Regul Mech, 1860: 3-20.

 

Li, X., Bao, T., Osire, T., Qiao, Z., Liu, J., Zhang, X., Xu, M., Yang, T., Rao, Z., 2021. MarR-type transcription factor RosR regulates glutamate metabolism network and promotes accumulation of L-glutamate in Corynebacterium glutamicum G01. Bioresour Technol, 342: 125945.

 

Liang, Z., Schnable, J.C., 2018. Functional divergence between subgenomes and gene pairs after whole genome duplications. Mol Plant, 11: 388-397.

 

Liu, X., Chen, J., Zhang, X., 2021a. Genetic regulation of shoot architecture in cucumber. Horticult Res, 8: 143.

 

Liu, X., Dong, S., Miao, H., Bo, K., Li, C., Yang, Y., Gu, X., Zhang, S., 2021b. Genome-wide analysis of expansins and their role in fruit spine development in cucumber (Cucumis sativus L.). Hortic Plant J. https://doi.org/10.1016/j.hpj.2021.11.004.

 

Lu, J., Nawaz, M., Wei, N., Cheng, F., Bie, Z., 2020. Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon. Hortic Plant J, 6: 49-60.

 

Luo, J., Zhou, J., Zhang, J., 2018. AUX/IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci, 19: 259.

 

Ma, J., Wang, L., Dai, J., Wang, Y., Lin, D., 2021. The NAC-type transcription factor CaNAC46 regulates the salt and drought tolerance of transgenic Arabidopsis thaliana. BMC Plant Biol, 21: 1-11.

 

Martin-Trillo, M., Cubas, P., 2010. TCP genes: a family snapshot ten years later. Trends Plant Sci, 15: 31-39.

 

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G., Sonnhammer, E., Tosatto, S., Paladin, L., Raj, S., Richardson, L., Finn, R., Bateman, A., 2021. Pfam: the protein families database in 2021. Nucleic Acids Res, 49: D412-D419.

 

Moharana, K., Venancio, T., 2020. Polyploidization events shaped the transcription factor repertoires in legumes (Fabaceae). Plant J, 103: 726-741.

 

Mukherjee, P., Singha, S., Kar, A., Chanda, J., Banerjee, S., Dasgupta, B., Haldar, P., Sharma, N., 2022. Therapeutic importance of Cucurbitaceae: a medicinally important family. J Ethnopharmacol, 282: 114599.

 

Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., Herve, C., 2007. TCP transcription factors predate the emergence of land plants. J Mol Evol, 65: 23-33.

 

Pei, Q., Li, N., Bai, Y., Wu, T., Yang, Q., Yu, T., Wang, Z., Liu, Z., Li, Q., Lin, H., Song, X., 2021a. Comparative analysis of the TCP gene family in celery, coriander and carrot (family Apiaceae). Veget Res, 1: 5.

 

Pei, Q., Yu, T., Wu, T., Yang, Q., Gong, K., Zhou, R., Cui, C., Yu, Y., Zhao, W., Kang, X., Cao, R., Song, X., 2021b. Comprehensive identification and analyses of the Hsf gene family in the whole-genome of three Apiaceae species. Hortic Plant J, 7: 457-468.

 

Price, M., Dehal, P., Arkin, A., 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol, 26: 1641-1650.

 

Qi, X., Zhu, Y., Li, S., Zhou, H., Xu, X., Xu, Q., Chen, X., 2020. Identification of genes related to mesocarp development in cucumber. Hortic Plant J, 6: 293-300.

 

Qiao, A., Fang, X., Liu, S., Liu, H., Gao, P., Luan, F., 2021. QTL-seq identifies major quantitative trait loci of stigma color in melon. Hortic Plant J, 7: 318-326.

 

Qiao, X., Li, Q., Yin, H., Qi, K., Li, L., Wang, R., Zhang, S., Paterson, A., 2019. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol, 20: 38.

 

Qiao, X., Yin, H., Li, L., Wang, R., Wu, J., Wu, J., Zhang, S., 2018. Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in pear (Pyrus bretschneideri). Front Plant Sci, 9: 161.

 

Qiu, Y., Köhler, C., 2022. Endosperm evolution by duplicated and neofunctionalized type I MADS-box transcription factors. Mol Biol Evol, 39: msab355.

 

Renny-Byfield, S., Wendel, J., 2014. Doubling down on genomes: polyploidy and crop plants. Am J Bot, 101: 1711-1725.

 

Rushton, P., Somssich, I., Ringler, P., Shen, Q., 2010. WRKY transcription factors. Trends Plant Sci, 15: 247-258.

 

Salman-Minkov, A., Sabath, N., Mayrose, I., 2016. Whole-genome duplication as a key factor in crop domestication. Nat Plants, 2: 1-4.

 

Schaefer, H., Heibl, C., Renner, S., 2009. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc Biol. Sci, 276: 843-851.

 

Smith, R., Bryant, R., 1975. Metal substitutions in carbonic anhydrase: a halide ion probe study. Biochem Biophys Res Commun, 66: 1281-1286.

 

Soltis, D., Visger, C., Soltis, P., 2014. The polyploidy revolution then… and now: Stebbins revisited. Am J Bot, 101: 1057-1078.

 

Song, X., Li, N., Guo, Y., Bai, Y., Wu, T., Yu, T., Feng, S., Zhang, Y., Wang, Z., Liu, Z., Lin, H., 2021. Comprehensive identification and characterization of simple sequence repeats based on the whole-genome sequences of 14 forest and fruit trees. For Res, 1: 7.

 

Song, X., Liu, T., Duan, W., Ma, Q., Ren, J., Wang, Z., Li, Y., Hou, X., 2014. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). Genomics, 103: 135-146.

 

Sousa-Baena, M., Lohmann, L., Hernandes-Lopes, J., Sinha, N., 2018. The molecular control of tendril development in Angiosperms. New Phytol, 218: 944-958.

 

Stracke, R., Werber, M., Weisshaar, B., 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 4: 447-456.

 

Subramanian, B., Gao, S., Lercher, M., Hu, S., Chen, W., 2019. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 47: W270-W275.

 

Sun, H., Wu, S., Zhang, G., Jiao, C., Guo, S., Ren, Y., Zhang, J., Zhang, H., Gong, G., Jia, Z., 2017. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Mol Plant, 10: 1293-1306.

 

Tian, S., Jiang, L., Cui, X., Zhang, J., Guo, S., Li, M., Zhang, H., Ren, Y., Gong, G., Zong, M., Liu, F., Chen, Q., Xu, Y., 2018. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep, 37: 1353-1356.

 

Tian, S., Jiang, L., Gao, Q., Zhang, J., Zong, M., Zhang, H., Ren, Y., Guo, S., Gong, G., Liu, F., Xu, Y., 2017. Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep, 36: 399-406.

 

Tsai, Y., Lin, C., Chen, B., 2010. Preparative chromatography of flavonoids and saponins in Gynostemma pentaphyllum and their antiproliferation effect on hepatoma cell. Phytomedicine, 18: 2-10.

 

Valladares, F., Gianoli, E., Saldana, A., 2011. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade? Ann Bot, 108: 231-239.

 

Velthuijs, N., Meldal, B., Geessinck, Q., Porras, P., Medvedeva, Y., Zubritskiy, A., Orchard, S., Logie, C., 2021. Integration of transcription coregulator complexes with sequence-specific DNA-binding factor interactomes. Biochim Biophys Acta (BBA) Gene Regul Mech, 1864: 194749.

 

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy, C., 2020. Scipy 1.0: fundamental algorithms for scientific computing in python. Nat Methods, 17: 261-272.

 

Wan, H., Yuan, W., Bo, K., Shen, J., Pang, X., Chen, J., 2013. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genom, 14: 1-15.

 

Wang, J., Sun, P., Li, Y., Liu, Y., Yang, N., Yu, J., Ma, X., Sun, S., Xia, R., Liu, X., 2018. An overlooked paleotetraploidization in Cucurbitaceae. Mol Biol Evol, 35: 16-26.

 

Wang, S., Yang, X., Xu, M., Lin, X., Lin, T., Qi, J., Shao, G., Tian, N., Yang, Q., Zhang, Z., Huang, S., 2015. A rare SNP identified a TCP transcription factor essential for tendril development in cucumber. Mol Plant, 8: 1795-1808.

 

Wang, Y., Tang, H., Debarry, J., Tan, X., Li, J., Wang, X., Lee, T., Jin, H., Marler, B., Guo, H., Kissinger, J., Paterson, A., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 40: e49.

 

Wang, Y., Wang, X., Tang, H., Tan, X., Ficklin, S., Feltus, F., Paterson, A., 2011. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS ONE, 6: e28150.

 

Waterhouse, A., Procter, J., Martin, D., Clamp, M., Barton, G., 2009. Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25: 1189-1191.

 

Wei, S., Chen, Y., Hou, J., Yang, Y., Yin, T., 2021. AUX/IAA and ARF gene families in salix suchowensis: identification, evolution, and dynamic transcriptome profiling during the plant growth process. Front Plant Sci, 12: 769.

 

Wu, J., Liu, S., Guan, X., Chen, L., He, Y., Wang, J., Lu, G., 2014. Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber. BMC Res Notes, 7: 1-13.

 

Wu, J., Wu, Y., Yang, B., 2002. Anticancer activity of Hemsleya amabilis extract. Life Sci, 71: 2161-2170.

 

Xie, D., Xu, Y., Wang, J., Liu, W., Zhou, Q., Luo, S., Huang, W., He, X., Li, Q., Peng, Q., Yang, X., Yuan, J., Yu, J., Wang, X., Lucas, W., Huang, S., Jiang, B., Zhang, Z., 2019a. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nat Commun, 10: 5158.

 

Xie, Z., Liu, W., Huang, H., Slavin, M., Zhao, Y., Whent, M., Blackford, J., Lutterodt, H., Zhou, H., Chen, P., 2010. Chemical composition of five commercial Gynostemma pentaphyllum samples and their radical scavenging, antiproliferative, and anti-inflammatory properties. J Agric Food Chem, 58: 11243-11249.

 

Xie, Z., Nolan, T.M., Jiang, H., Yin, Y., 2019b. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci, 10: 228.

 

Xin, T., Tian, H., Ma, Y., Wang, S., Yang, L., Li, X., Zhang, M., Chen, C., Wang, H., Li, H., Xu, J., Huang, S., Yang, X., 2022. Targeted creating new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in Cucurbit plants. Hortic Res, 9: uhab086.

 

Yang, J., Zhang, J., Du, H., Zhao, H., Mao, A., Zhang, X., Jiang, L., Zhang, H., Wen, C., Xu, Y., 2021. Genetic relationship and pedigree of Chinese watermelon varieties based on diversity of perfect SNPs. Hortic Plant J, 8: 489-498.

 

Yang, X., Yan, J., Zhang, Z., Lin, T., Xin, T., Wang, B., Wang, S., Zhao, J., Zhang, Z., Lucas, W.J., Li, G., Huang, S., 2020. Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nat Plants, 6: 809-822.

 

Yoon, J., Cho, L., Yang, W., Pasriga, R., Wu, Y., Hong, W., Bureau, C., Wi, S., Zhang, T., Wang, R., 2020. Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis. J Exp Bot, 71: 5348-5364.

 

Zhai, J., Jeong, D.H., De Paoli, E., Park, S., Rosen, B.D., Li, Y., Gonzalez, A.J., Yan, Z., Kitto, S.L., Grusak, M.A., Jackson, S.A., Stacey, G., Cook, D.R., Green, P.J., Sherrier, D.J., Meyers, B.C., 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev, 25: 2540-2553.

 

Zhang, M., Liu, Q., Yang, X., Xu, J., Liu, G., Yao, X., Ren, R., Xu, J., Lou, L., 2020. CRISPR/Cas9-mediated mutagenesis of Clpsk1 in watermelon to confer resistance to Fusarium oxysporum f.Sp. niveum. Plant Cell Rep, 39: 589-595.

 

Zhang, X., Zhou, T., Yang, J., Sun, J., Ju, M., Zhao, Y., Zhao, G., 2018. Comparative analyses of chloroplast genomes of Cucurbitaceae species: lights into selective pressures and phylogenetic relationships. Molecules, 23: 2165.

 

Zhao, D., Chen, Z., Xu, L., Zhang, L., Zou, Q., 2021. Genome-wide analysis of the MADS-box gene family in maize: gene structure, evolution, and relationships. Genes-Basel, 12: 1956.

 

Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., Zhao, K., Blanca, J., Zhang, Z., Huang, S., Xu, Y., Weng, Y., Mazourek, M., U, K., Ando, K., McCreight, J., Schaffer, A., Burger, J., Tadmor, Y., Katzir, N., Tang, X., Liu, Y., Giovannoni, J., Ling, K., Wechter, W., Levi, A., Garcia-Mas, J., Grumet, R., Fei, Z., 2019. Cucurbit genomics database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Res, 47: D1128-D1136.

 

Zhou, M., Guo, S., Tian, S., Zhang, J., Ren, Y., Gong, G., Li, C., Zhang, H., Xu, Y., 2020. Overexpression of the watermelon ethylene response factor ClERF069 in transgenic tomato resulted in delayed fruit ripening. Hortic Plant J, 6: 247-256.

 

Zou, Z., Yang, J., 2019. Genome-wide comparison reveals divergence of cassava and rubber aquaporin family genes after the recent whole-genome duplication. BMC Genom, 20: 1-16.

Horticultural Plant Journal
Pages 562-574
Cite this article:
Zhang Y, Zhang Y, Li B, et al. Polyploidy events shaped the expansion of transcription factors in Cucurbitaceae and exploitation of genes for tendril development. Horticultural Plant Journal, 2022, 8(5): 562-574. https://doi.org/10.1016/j.hpj.2022.07.004

389

Views

6

Downloads

17

Crossref

16

Web of Science

15

Scopus

4

CSCD

Altmetrics

Received: 28 January 2022
Revised: 12 April 2022
Accepted: 24 June 2022
Published: 21 July 2022
© 2022 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return