AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

The updated weeping forsythia genome reveals the genomic basis for the evolution and the forsythin and forsythoside A biosynthesis

Yong LiaFan WangaNancai Peib( )Qian LiaHongli LiuaWangjun YuancHechen Zhangd
Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou 450002, China
Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
School of Pharmacy, Henan University, Kaifeng, Henan 475000, China
Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Weeping forsythia (Forsythia suspensa, Oleaceae) is a deciduous broad-leaved tree species distributed in the warm temperate zone of China. However, the species still lacks a chromosome-level genome. In this study, the former draft genome (Accession No. WIPI00000000) of weeping forsythia was assembled into 14 chromosomes with a 712.9 Mb genome size. Weeping forsythia underwent α and β whole-genome duplication events. After the divergence between weeping forsythia and Olea europaea, 1453 gene families had a significant expansion, and 1146 gene families had a significant contraction. The enrichment pathways and ontologies of expanded genes suggested that the tillering, photosynthesis and growth capacity of weeping forsythia were enhanced after the divergence of weeping forsythia and O. europaea. The contracted genes suggested that the resistance of weeping forsythia to cold and drought was weakened. The last glacial period led to a significant decline in the effective population size of weeping forsythia. Forty-six candidate genes were identified for the synthesis of the forsythin and forsythoside A by genomic and transcriptomic data. In this study, we improved the previous draft genome of weeping forsythia. Our genome will provide genomic resources for the subsequent evolution and breeding research of weeping forsythia.

References

 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J Mol Biol, 215: 403-410.

 

Bairoch, A., Apweiler, R., 1996. The swiss-prot protein sequence data bank and its new supplement trembl. Nucleic Acids Res, 24: 21-25.

 

Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H., 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 422: 433-438.

 

Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods, 12: 59-60.

 

Cai, T., Meng, X., Liu, X., Liu, T., Wang, H., Jia, Z., Yang, D., Ren, X., 2018. Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones. Front Plant Sci, 9: 1886.

 

Chen, F., Dong, W., Zhang, J., Guo, X., Chen, J., Wang, Z., Lin, Z., Tang, H., Zhang, L., 2018. The sequenced angiosperm genomes and genome databases. Front Plant Sci, 9: 418.

 

Chen, F., Song, Y., Li, X., Chen, J., Mo, L., Zhang, X., Lin, Z., Zhang, L., 2019. Genome sequences of horticultural plants: past, present, and future. Hortic Res, 6: 112.

 

De Bie, T., Cristianini, N., Demuth, J.P., Hahn, M.W., 2006. Cafe: a computational tool for the study of gene family evolution. Bioinformatics, 22: 1269-1271.

 

Dimmer, E.C., Huntley, R.P., Alam-Faruque, Y., Sawford, T., O'Donovan, C., Martin, M.J., Bely, B., Browne, P., Mun Chan, W., Eberhardt, R., Gardner, M., Laiho, K., Legge, D., Magrane, M., Pichler, K., Poggioli, D., Sehra, H., Auchincloss, A., Axelsen, K., Blatter, M.C., Boutet, E., Braconi-Quintaje, S., Breuza, L., Bridge, A., Coudert, E., Estreicher, A., Famiglietti, L., Ferro-Rojas, S., Feuermann, M., Gos, A., Gruaz-Gumowski, N., Hinz, U., Hulo, C., James, J., Jimenez, S., Jungo, F., Keller, G., Lemercier, P., Lieberherr, D., Masson, P., Moinat, M., Pedruzzi, I., Poux, S., Rivoire, C., Roechert, B., Schneider, M., Stutz, A., Sundaram, S., Tognolli, M., Bougueleret, L., Argoud-Puy, G., Cusin, I., Duek-Roggli, P., Xenarios, I., Apweiler, R., 2012. The uniprot-go annotation database in 2011. Nucleic Acids Res, 40: D565-D570.

 

Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 19: 11-15.

 

Durand, N.C., Robinson, J.T., Shanim, M.S., Machol, I., Mesirov, J.P.,, Lander, E.S., Aiden, E.L., 2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst, 3: 99-101.

 

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, G.A., Smart, A., Sonnhammer, E.L.L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S.C.E., Finn, R.D., 2019. The pfam protein families database in 2019. Nucleic Acids Res, 47: 427-432.

 

Emms, D.M., Kelly, S., 2019. Orthofinder: phylogenetic orthology inference for comparative genomics. Genome Biol, 20: 238.

 

Flori, S., Jouneau, P.H., Bailleul, B., Gallet, B., Estrozi, L.F., Moriscot, C., Bastien, O., Eicke, S., Schober, A., Bártulos, C.R., Maréchal, E., Kroth, P.G., Petroutsos, D., Zeeman, S., Breyton, C., Schoehn, G., Falconet, D., Finazzi, G., 2017. Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun, 8: 15885.

 

Fu, Z.Z., Lei, Y.K., Peng, D.D., Li, Y., 2016. Population genetics of the widespread shrub Forsythia suspensa (Oleaceae) in warm-temperate China using microsatellite loci: implication for conservation. Plant Systemat Evol, 302: 1-9.

 

Fu, Z.Z., Li, Y.H., Zhang, K.M., Li, Y., 2014. Molecular data and ecological niche modeling reveal population dynamics of widespread shrub Forsythia suspensa (Oleaceae) in China's warm-temperate zone in response to climate change during the pleistocene. BMC Evol Biol, 14: 114.

 

Gu, Z., Gu, L., Eils, R., Schlesner, M., Brors, B., 2014. Circlize implements and enhances circular visualization in R. Bioinformatics, 30: 2811-2812.

 

Gupta, R., Chakrabarty, S.K., 2013. Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav, 8: e25504.

 

Ha, Y.H., Kim, C., Choi, K., Kim, J.H., 2018. Molecular phylogeny and dating of forsythieae (Oleaceae) provide insight into the miocene history of eurasian temperate shrubs. Front Plant Sci, 9: 99.

 
Harrell, F.E., 2014. Hmisc: A Package of Miscellaneous R Functions. https://hbiostat.org/R/Hmisc/.
 

He, R., et al., 2018. Quantitative changes in the transcription of phytohormone-related genes: some transcription factors are major causes of the wheat mutant dmc not tillering. Int J Mol Sci, 19: 1324.

 
Hewitt, G.M., 2003. Ice ages: their impact on species distributions and evolution. In: Rothschild, L.J., Lister, A.M. (Eds.), Evolution on Planet Earth. Academic Press, Oxford.
 

Hu, K., Guan, W.J., Bi, Y., Zhang, W., Li, L., Zhang, B., Liu, Q., Song, Y., Li, X., Duan, Z., Zheng, Q., Yang, Z., Liang, J., Han, M., Ruan, L., Wu, C., Zhang, Y., Jia, Z.H., Zhong, N.S., 2021. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: a multicenter, prospective, randomized controlled trial. Phytomedicine, 93: 153775.

 

Huang, J., Wei, C., Li, Q., 2011. Study on content of phyillyrin and the antioxidative capcity of different parts of Forsythia suspensa. Heilongjiang Agr Sci, 11: 84-86. (in Chinese)

 

Jensen, L.J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., Bork, P., 2008. Eggnog: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res, 36: 250-254.

 

Jia, J., Zhang, F., Li, Z., Qin, X., Zhang, L., 2015. Comparison of fruits of Forsythia suspensa at two different maturation stages by nmr-based metabolomics. Molecules, 20: 10065-10081.

 

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y., 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 36: 480-484.

 

Katoh, K., Standley, D.M., 2013. Mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol, 30: 772-780.

 

Kim, D., Langmead, B., Salzberg, S.L., 2015. Hisat: a fast spliced aligner with low memory requirements. Nat Methods, 12: 357-360.

 

Kumar, S., Stecher, G., Suleski, M., Hedges, S.B., 2017. Timetree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol, 34: 1812-1819.

 

Li, H., Durbin, R., 2011. Inference of human population history from individual whole-genome sequences. Nature, 475: 493-496.

 

Li, L.F., Cushman, S.A., He, Y.X., Li, Y., 2020. Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia. Hortic Res, 7: 130.

 

Li, Y., Shi, L.C., Cushman, S.A., 2021. Transcriptomic responses and physiological changes to cold stress among natural populations provide insights into local adaptation of weeping forsythia. Plant Physiol Biochem, 165: 94-103.

 

Liu, Q., Chen, X., Guo, L., Huang, H., Shen, F., Ge, P., Zhao, J., 2020. Comparison of the growth adaptation of six Forthysia species in the Quaternary red soil of south China. Res Soil Water Conserv, 27: 357-369.

 

Ma, Q., Li, R., Pan, W., Huang, W., Liu, B., Xie, Y., Wang, Z., Li, C., Jiang, H., Huang, J., hi, Y., Dai, J., Zheng, K., Li, X., Hui, M., Fu, L., Yang, Z., 2020. Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-Cov-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway. Phytomedicine, 78: 153296.

 

Niu, Y., Zhang, H.B., Yang, Q.X., Chen, L.Y., Yan, K.L., 2003. Studies on culturing technology of Forsythia suspensa in hexi district. J Gansu Agr Univer, 38: 234-237.

 

Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg, S.L., 2015. Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 33: 290-295.

 

Qiao, Y., Cao, Y., Jia, M., Wang, Y., He, J., Zhang, X., Wang, W., Song, Y., 2020. Research on flower buds growth development and pollination habits of Forsythia suspensa heterostyly. Acta Hort Sin, 47: 699-707. (in Chinese)

 

Rao, G., Zhang, J., Liu, X., Lin, C., Xin, H., Xue, L., Wang, C., 2021. De novo assembly of a new Olea europaea genome accession using nanopore sequencing. Hortic Res, 8: 64.

 

Schwechheimer, C., 2008. Understanding gibberellic acid signaling–are we there yet? Curr Opin Plant Biol, 11: 9-15.

 

Shiraishi, A., Murata, J., Matsumoto, E., Matsubara, S., Ono, E., Satake, H., 2016. De novo transcriptomes of Forsythia koreana using a novel assembly method: insight into tissue- and species-specific expression of lignan biosynthesis-related gene. PLoS One, 11: e0164805.

 

Sollars, E.S., Harper, A.L., Kelly, L.J., Sambles, C.M., Ramirez-Gonzalez, R.H., Swarbreck, D., Kaithakottil, G., Cooper, E.D., Uauy, C., Havlickova, L., Worswick, G., Studholme, D.J., Zohren, J., Salmon, D.L., Clavijo, B.J., Li, Y., He, Z., Fellgett, A., McKinney, L.V., Nielsen, L.R., Douglas, G.C., Kjær, E.D., Downie, J.A., Boshier, D., Lee, S., Clark, J., Grant, M., Bancroft, I., Caccamo, M., Buggs, R.J.A., 2017. Genome sequence and genetic diversity of European ash trees. Nature, 541: 212-216.

 

Sun, L., Rai, A., Rai, M., Nakamura, M., Kawano, N., Yoshimatsu, K., Suzuki, H., Kawahara, N., Saito, K., Yamazaki, M., 2018. Comparative transcriptome analyses of three medicinal forsythia species and prediction of candidate genes involved in secondary metabolisms. J Nat Med, 72: 867-881.

 

Suyama, M., Torrents, D., Bork, P., 2006. Pal2nal: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res, 34: 609-612.

 

Tang, H., Krishnakumar, V., Li, J., Zhang, X., 2015. Jcvi: jcvi utility libraries. Zenodo. https://doi.org/10.5281/zenodo.31631.

 

Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A., 2003. The COG database: an updated version includes eukaryotes. BMC Bioinf, 4: 41.

 

Wang, J., Fan, S., Li, A., Chen, T., Sun, B., Yang, X., 2013a. Analysis of the contents of forsythin and forsythiaside a in different parts of Forsythia suspensa and its medicinal use discussion. Mod Chin Med, 15: 556-559.

 

Wang, T.Q., Chen, T., Yan, H.F., Wang, Y., 2018. TCM treatment of anemopyretic cold rule analysis. J Tianjin Univer Trad Chin Med, 37: 113-117.

 

Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J., Wang, X., Lee, T., Jin, H., Marler, B., Guo, H., 2012. Mcscanx: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 40: e49.

 

Wang, Y., Tan, X., Paterson, A.H., 2013b. Different patterns of gene structure divergence following gene duplication in Arabidopsis. BMC Genom, 14: 652.

 

Wickham, H., 2009. Ggplot 2: Elegant Graphics for Data Analysis. Springer, New York.

 

Yan, R., Yang, Y.J., Liu, H.W., Li, X.N., Guo, B.L., 2016. Effect of earlier period harvest on content of forsythoside a and phillyrin of forsythiae fructus. Chin Med J, 18: 579-582.

 

Yang, J., Miao, C.Y., Mao, R.L., Li, Y., 2017. Landscape population genomics of forsythia (Forsythia suspensa) reveal that ecological habitats determine the adaptive evolution of species. Front Plant Sci, 8: 481.

 

Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 24: 1586-1591.

 

Yu, G., Wang, L.G., Han, Y., He, Q.Y., 2012. Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS, 16: 284-287.

 

Zhang, D., Ren, L., Yue, J., Wang, L., Zhuo, L., Shen, X., 2014. GA4 and IAA were involved in the morphogenesis and development of flowers in Agapanthus praecox ssp. Orientalis J Plant Physiol, 171: 966-976.

 

Zhang, X., Zhang, S., Zhao, Q., Ming, R., Tang, H., 2019. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants, 5: 833-845.

Horticultural Plant Journal
Pages 1149-1161
Cite this article:
Li Y, Wang F, Pei N, et al. The updated weeping forsythia genome reveals the genomic basis for the evolution and the forsythin and forsythoside A biosynthesis. Horticultural Plant Journal, 2023, 9(6): 1149-1161. https://doi.org/10.1016/j.hpj.2022.09.004

395

Views

5

Downloads

8

Crossref

6

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 23 March 2022
Revised: 27 June 2022
Accepted: 11 July 2022
Published: 16 September 2022
© 2022 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return