AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (968.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Agronomic evaluation of eight 41 B × 110 richter grapevine genotypes as rootstock candidates for mediterranean viticulture

Diana Marína,b( )Carlos Mirandaa,bFrancisco Javier Abada,cJorge Urrestarazua,bBlanca MayoraAna Villa-Llopa,bLuis Gonzaga Santestebana,b
Department of Agronomy, Biotechnology and Food Science, Public University of Navarre, Campus Arrosadia, Pamplona 31006, Navarra, Spain
Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Public University of Navarre, Campus Arrosadia, Pamplona 31006, Navarra, Spain
Institute for Agri-food Technology and Infrastructure of Navarre (INTIA), Edificio de Peritos, Avda. Serapio Huici 22, Villava 31610, Navarra, Spain

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Choosing the most appropriate rootstock(s) is a key decision for the profitability of vineyards; therefore, there must be a sufficient range of rootstocks in the market adapted to different environmental conditions and production objectives. However, rootstock-breeding programs have been scarce in recent decades, and most of the rootstocks used today were bred a century ago, when the needs of the sector were very different from today. In this work, we aimed to evaluate new rootstock candidates before their introduction in the market. An agronomic evaluation was conducted on eight novel rootstock genotypes obtained from the first generation of the cross-pollination of 41 B Millardet et de Grasset (41 B) and 110 Richter (110 R) grafted with ‘Syrah’ and ‘Tempranillo’ and planted in a typical vineyard of the Ebro Valley in Spain. During the four consecutive growing seasons (2016–2019), growth, yield and berry composition parameters at harvest were collected. A linear mixed-effects model was constructed, considering year and block as random effects. Multiple factor analysis and hierarchical clustering on principal components were performed to establish clusters of genotypes with similar behaviour. The rootstock candidates showed a very wide performance range compared to their parents. The trial allowed us to identify two very promising candidates (RG8 and RG10), whose registration as commercial rootstocks is already in progress.

References

 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme 4. J Stat Soft, 67.

 
Bavaresco, L., Gardiman, M., Brancadoro, L., Espen, L., Failla, O., Scienza, A., Vezzulli, S., Zulini, L., Velasco, R., Stefanini, M., Di Gaspero, G., Testolin, R., 2015. Grapevine breeding programs in Italy, in: Reynolds, A. (Ed.), Grapevine Breeding Programs for the Wine Industry: Traditional and Molecular Techniques. Wood Publishing, Cambridge, pp. 135–157.
 

Beuve, M., Moury, B., Spilmont, A.S., Sempé-Ignatovic, L., Hemmer, C., Lemaire, O., 2013. Viral sanitary status of declining grapevine Syrah clones and genetic diversity of Grapevine Rupestris stem pitting-associated virus. Eur J Plant Pathol, 135: 439–452.

 

Caffarra, A., Rinaldi, M., Eccel, E., Rossi, V., Pertot, I., 2012. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric Ecosyst Environ, 148: 89–101.

 

Cibriáin, J.F., Sagüés, A., Caminero, L., Oria, I., Subirats, I., Arrondo, C., 2013. Injerto de la vid. Viabilidad de diferentes portainjertos en Chardonnay y Tempranillo [Grafting on grapevine. Viability of different rootstocks grafted with Chardonnay and Tempranillo scions]. Navarra Agraria: 40–46.

 

Costa, M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., Chaves, M., 2016. Modern viticulture in southern Europe: vulnerabilities and strategies for adaptation to water scarcity. Agric Water Manag, 164: 5–18.

 
Cousins, P., 2005. Evolution, genetics, and breeding: viticultural applications of the origins of our rootstocks, in: Cousins, P., Striegler, R.K. (Eds.), Grapevine Rootstocks: Current Use, Research, and Application. Osage Beach, Missouri, pp. 1–7.
 

de Andrés, M.T., Cabezas, J.A., Cervera, M.T., Borrego, J., Martínez-Zapater, J.M., Jouve, N., 2007. Molecular characterization of grapevine rootstocks maintained in germplasm collections. Am J Enol Vitic, 58: 75–86.

 
European Commission, 2009. (CEE) Nº 2676/90 Regulation of the European Commission for the Analysis Methods Applicable in the Wine Sector.
 

Fraga, H., García de Cortázar Atauri, I., Santos, J.A., 2018. Viticultural irrigation demands under climate change scenarios in Portugal. Agric Water Manag, 196: 66–74.

 

Filler., D.M., Luby, J.J., Ascher, P.D., 1994a. Incongruity in the interspecific crosses of Vitis L. reproductive expression in the F1 progeny. Euphytica, 78: 155–164.

 

Filler., D.M., Luby, J.J., Ascher, P.D., 1994b. Incongruity in the interspecific crosses of Vitis L. reproductive expression in the F2 progeny. Euphytica, 78: 227–237.

 

Guillaumie, S., Decroocq, S., Ollat, N., Delrot, S., Gomes, E., Cookson, S.J., 2020. Dissecting the control of shoot development in grapevine: genetics and genomics identify potential regulators. BMC Plant Biol, 20: 43.

 

Gutiérrez-Gamboa, G., Zheng, W., Martínez de Toda, F., 2021. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: a comprehensive review. Food Res Int, 139: 109946.

 

Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biom J, 50: 346–363.

 

Jones, G.V., White, M.A., Cooper, O.R., Storchmann, K., 2005. Climate change and global wine quality. Clim Change, 73: 319–343.

 
Kassambara, A., 2020. rstatix: pipe-Friendly framework for basic statistical tests. R package version 0.4.0.
 
Kassambara, A., Mundt, F., 2019. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.6.
 

Larignon, P., Fontaine, F., Farine, S., Clément, C., Bertsch, C., 2009. Esca et black dead arm : deux acteurs majeurs des maladies du bois chez la Vigne. C R Biol, 332: 765–783.

 

Lê, S., Josse, J., Husson, F., 2008. FactoMineR: an R package for multivariate analysis. J Stat Softw, 25: 1–18.

 

Lopez-Bustins, J.A., Pla, E., Nadal, M., De Herralde, F., Savé, R., 2014. Global change and viticulture in the Mediterranean region: a case of study in north-eastern Spain. Span J Agric Res, 12: 78–88.

 

Marín, D., García, R., Eraso, J., Urrestarazu, J., Miranda, C., Royo, J.B., Abad, F.J., Santesteban, L.G., 2019a. Evaluation of the agronomic performance of ‘Syrah’ and ‘Tempranillo’ when grafted on 12 rootstocks. Vitis, 58: 111–118.

 
Marín, D., Mayor, B., Santesteban, L.G., Miranda, C., Urrestarazu, J., Abad, F.J., Save, R., Aranda, X., de Herralde, F., 2019b. The grapevine nursery sector in Spain/A szőlőiskola-szektor Spanyolországban. In: Szabó, P. (Ed.), Innovació a Szoloszaporításban. Akadémiai Kiadó, Budapest, pp. 109
 

Marín, D., Armengol, J., Carbonell-Bejerano, P., Escalona, J.M., Gramaje, D., Hernández-Montes, E., Intrigliolo, D.S., Martínez Zapater, J.M., Medrano, H., Mirás-Avalos, J.M., Palomares-Rius, J.E., Romero-Azorín, P., Savé, R., Santesteban, L.G., de Herralde, F., 2020. Challenges of viticulture adaptation to global change: tackling the issue from the roots. Aust J Grape Wine Res, 27: 8–25.

 

Martínez de Toda, F., Balda, P., 2015. Quantifying the effect of temperature on decoupling anthocyanins and sugars of the grape (Vitis vinifera L. 'Maturana Tinta de Navarrete’). Vitis, 54: 117–120.

 

May, P., 1994. Using grapevine rootstocks: the Australian perspective, first ed. Winetitles, Adelaide.

 

Miele, A., Rizzon, L.A., 2017. Rootstock-Scion interaction 2: effect on the composition of Cabernet Sauvignon grape must. Rev Bras Frutic, 39: e434.

 

Morris, J.R., Main, G.L., Striegler, R.K., 2007. Rootstock and training system affect ‘Sunbelt’ grape productivity and fruit composition. J Am Pomol Soc, 61: 71–77.

 

Neethling, E., Petitjean, T., Quénol, H., Barbeau, G., 2017. Assessing local climate vulnerability and winegrowers' adaptive processes in the context of climate change. Mitig Adapt Strateg Glob Chang, 22: 777–803.

 
OIV, 2009. Compendium of International Methods of Analysis e OIV. LMalic Acid. Method OIV-MA-AS313-11. International Organisation of Vine and Wine, Paris, France.
 
OIV, 2017. Distribution of the World's Grapevine Varieties. International Organisation of Vine and Wine, Paris, France.
 

Ollat, N., Bordenave, L., Tandonnet, J.P., Boursiquot, J.M., Marguerit, E., 2016. Grapevine rootstocks: origins and perspectives. Acta Hortic, 1136: 11–22.

 

Pulko, B., Vršič, S., Valdhuber, J., 2012. Influence of various rootstocks on the yield and grape composition of Sauvignon Blanc. Czech J Food Sci, 30: 467–473.

 
R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Ravaz, M.L., 1911. L’effeuillage de la vigne. Annales de l’École nationale d’agriculture de Montpellier, 11: 216–244.

 
Renault-Spilmont, A.S., Boursiquot, J.M., 2002. Syrah Decline in French Vineyards. Foundation Plant Materials Services Grape Program Newsletter, pp. 22–23.
 
Reynier, A., 1989. Manual de viticulture, fourth ed. Ediciones MundiPrensa Castelló, Madrid.
 

Ribéreau-Gayon, P., Stonestreet, E. 1965. Determination of anthocyanins in red wine. Bull Soc chim Fr, 9: 2649–2652.

 
RStudio Team, 2020. RStudio. Integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/.
 

Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.T., Correia, C., Moriondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C., Molitor, D., Junk, J., Beyer, M., Schultz, H.R., 2020. A review of the potential climate change impacts and adaptation options for European viticulture. Appl Sci, 10: 3092.

 

Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchene, E., Gowdy, M., Marguerit, E., Pieri, P., Parker, A., de Rességuier, L., Ollat, N., 2019. An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9: 514.

 

Zavaglia, C., Pecile, M., Gardiman, M., Bavaresco, L., 2016. Production of propagating material of grapevine rootstocks in the EU and Italy. Acta Hortic, 1136: 57–62.

Horticultural Plant Journal
Pages 720-728
Cite this article:
Marín D, Miranda C, Abad FJ, et al. Agronomic evaluation of eight 41 B × 110 richter grapevine genotypes as rootstock candidates for mediterranean viticulture. Horticultural Plant Journal, 2023, 9(4): 720-728. https://doi.org/10.1016/j.hpj.2022.10.002

264

Views

4

Downloads

3

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 04 June 2022
Revised: 09 August 2022
Accepted: 12 September 2022
Published: 07 October 2022
© 2022 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return