AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

QTL mapping for berry shape based on a high-density genetic map constructed by whole-genome resequencing in grape

Yandi WuaYong WangbXiucai FanaYing ZhangaJianfu JiangaLei SunaQiangwei LuobFeng Sunb( )Chonghuai Liua( )
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
Research Institute of Grape and Melon of Xinjiang Uyghur Autonomous Region, Turpan, Xinjiang Uygur Autonomous Region 838200, China

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Grape berry shape is an important agricultural trait. Clarifying its genetic basis is significant for cultivating grape varieties that meet market demands. However, the current study by forward genetics has not achieved in-depth results. Here, a high-density map was constructed to identify quantitative trait loci (QTLs) for berry shape. A total of 358709 polymorphic SNPs were obtained using whole-genome resequencing (WGS) based on 208 F2 individuals derived from round grape ‘E42-6’ and oblong grape ‘Rizamat’. The 1635.65 cM high-density map was divided into 19 linkage groups with an average distance of 0.37 cM. Using this map, three significant QTLs for fruit shape index (ShI: ratio of berry length to berry width) identified over three years were mapped onto LG4 and LG5, including one stable QTL on Chr5 with the genomic region of 0.47–1.94 Mb. Combining with gene annotation and expression patterns based on RNA-seq data from two contrasting F2 individuals with round and oblong berry (their average ShI was 1.89 and 1.10, respectively) at four developmental stages, four candidate genes were selected from the above QTLs. They were mainly involved in DNA replication, cell wall modification, and phytohormone biosynthesis. Further analysis of RNA-seq data revealed that several important phytohormone synthesis and metabolic pathways were enriched based on differentially expressed genes (DEGs), which was consistent with the results of QTL mapping for genes related to plant hormone biosynthesis in the F2 population. Furthermore, a comparison of plant hormone content showed that there were significant differences in IAA and tZ content between the two contrasting F2 individuals at different developmental stages. Our findings provide molecular insights into the genetic variation in grape berry shape. Stable QTLs and their tightly linked markers offer the possibility of marker-assisted selection to accelerate berry shape breeding.

References

 

Cao, K., Zhou, A.K., Wang, Q., Guo, J., Zhao, P., Zhu, G.R., Fang, W.C., Chen, C.W., Wang, X.W., Wang, X.L., Tian, Z.X., Wang, L.R., 2016. Genome-wide association study of 12 agronomic traits in peach. Nat Commun, 7: 1-10.

 

Chang, Y.S., Sun, R., Sun, H.H., Zhao, Y.B., Han, Y.P., Chen, D.M., Wang, Y., Zhang, X.Z., Han, Z.H., 2014. Mapping of quantitative trait loci corroborates independent genetic control of apple size and shape. Sci Hortic, 174: 126-132.

 

Christodoulou, A., Pool, R., Weaver, R., 1966. Prebloom thinning of Thompson seedless grapes is feasible when followed by bloom spraying with gibberellin. Calif Agric, 20, 8-10.

 

Cong, B., Barrero, L.S., Tanksley, S.D., 2008. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet, 40, 800-804.

 

Dou, J.L., Zhao, S.J., Lu, X.Q., He, N., Zhang, L., Ali, A., Kuang, H.H., Liu, W.G., 2018. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor Appl Genet, 131: 947-958.

 

Fu, P.N., Tian, Q.Y., Lai, G.T., Li, R.F., Song, S.R., Lu, J., 2019. Cgr1, a ripe rot resistance QTL in Vitis amurensis ‘Shuang Hong’ grapevine. Hortic Res, 6: 67-76.

 

Gao, Z., Zhang, H., Cao, C., Han, J., Li, H., Ren, Z., 2020. QTL mapping for cucumber fruit size and shape with populations from long and round fruited inbred lines. Hortic Plant J, 6: 132-144.

 

Guo, J., Cao, K., Li, Y., Yao, J.L., Deng, C., Wang, Q., Zhu, G.R., Fang, W.C., Chen, C.W., Wang, X.W., Guan, L.P., Ding, T.Y., Wang, L.R., 2018. Comparative transcriptome and microscopy analyses provide insights into flat shape formation in peach (Prunus persica). Front Plant Sci, 8: 2215-2229.

 

Guo, J., Cao, K., Deng, C., Li, Y., Zhu, G.R., Fang, W.C., Chen, C.W., Wang, X.W., Wu, J.L., Guan, L.P., Wu, S., Guo, W.W., Yao, J.L., Fei, Z.J., Wang, L.R., 2020. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biol, 21: 1-19.

 

He, J., Yu, S.L., Ma, C., 2009. Effects of plant growth regulator on endogenous hormone levels during the period of the red globe growth. J Agric Sci, 1: 92-100.

 

Huang, W.J., Li, M., 2021. Status and prospects whole genome sequencing in fruit trees. Acta Hortic Sin, 48: 733-748. (in Chinese)

 

Huang, X.H., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J.P., Fan, A.L., Weng, Q.J., Huang, T., Dong, G.J., Sang, T., Han, B., 2009. High-throughput genotyping by whole-genome resequencing. Genome Res, 19: 1068-1076.

 
International Organisation of Vine and Wine, 2019. 2019 Statistical Report on World Vitiviniculture. OIV, Paris, France.
 

Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463-468.

 

Jiang, L.X., Yang, S.L., Xie, L.F., Puah, C.S., Zhang, X.Q., Yang, W.C., 2005. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell, 17: 584-596.

 

Jiang, J.F., Fan, X.C., Zhang, Y., Tang, X.P., Li, X.M., Liu, C.H., Zhang, Z.W., 2020. Construction of a high-density genetic map and mapping of firmness in grapes (Vitis vinifera L.) based on whole-genome resequencing. Int J Mol Sci, 21: 797-819.

 

Kamada, K., Kubota, Y., Arata, T., Shindo, Y., Hanaoka, F., 2007. Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol, 14: 388-396.

 

Khambanonda, I., 1950. Quantitative inheritance of fruit size in red pepper (Capsicum frutescens L.). Genetics, 35: 322-343.

 

Kosambi, D.D., 1943. The estimation of map distances from recombination values. Ann Hum Genet, 12: 172-175.

 

Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25: 1754-1760.

 

Li, Y., Wang, L., 2020. Genetic resources, breeding programs in China, and gene mining of peach: a review. Hortic Plant J, 6: 205-215.

 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009b. The sequence Alignment/Map format and SAMtools. Bioinformatics, 25: 2078-2079.

 

Li, T., Zhang, J.F., Zhang, J.H., Wang, Q.J., Zhang, S.J., Bai, Y.G., 2010. Fuzzy model for grape sugar content and fruit shape index with irrigation quota as parameter. Chin J Eco-Agric, 18: 348-351. (in Chinese).

 

Liu, J., Van Eck, J., Cong, B., Tanksley, S.D., 2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA, 99: 13302-13306.

 

Liu, D.Y., Ma, C.X., Hong, W.G., Huang, L., Liu, M., Liu, H., Zeng, H.P., Deng, D.J., Xin, H.G., Song, J., Xu, C.H., Sun, X.W., Hou, X.L., Wang, X.W., Zheng, H.K., 2014, Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE, 9: e98855.

 

Liu, H.R., Zhang, H., Pan, X.L., Xu, M., Huang, J., He, M.X., 2020. A high density genetic map by whole-genome resequencing for QTL fine-mapping and dissecting candidate genes for growth or sex traits in the pearl oyster (Pinctada fucata martensii). Aquaculture, 519: 734839.

 

Liu, T.p., He, J.H., Dong, K.J., Wang, X.W., Wang, W.W., Yang, P., Ren, R.Y., Zhang, L., Zhang, Z.S., Yang, T.Y.,. 2020. QTL mapping of yield component traits on bin map generated from resequencing a RIL population of foxtail millet (Setaria italica). BMC Genom, 21: 1-13.

 

Ma, J., Li, C.C., Zong, M., Qiu, Y.H., Liu, Y.M., Huang, Y.T., Xie, Y.L., Zhang, H.J., Wang, J.S., 2021. CmFSI8/CmOFP13 gene encoding an OFP family protein controls fruit shape in melon (Cucumis melo L.). J Exp Bot, 73: 1370-1384.

 

Mamani, M., López, M.E., Correa, J., Ravest, G., Hinrichsen, P., 2021. Identification of stable quantitative trait loci and candidate genes for sweetness and acidity in tablegrape using a highly saturated single-nucleotide polymorphism-based linkage map. Aust J Grape Wine Res, 27: 308-324.

 

Mariotti, L., Picciarelli, P., Lombardi, L., Ceccarelli, N., 2011. Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. Plant Growth Regul, 30: 405-415.

 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A., 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20: 1297-1303.

 

Mu, Q., Huang, Z, J., Chakrabarti, M., Eudald, I., Liu, X.X., Wang, Y.P., Ramos, A., van der Knaap, E., 2017. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. PLoS Genet, 13: e1006930.

 

Muños, S., Ranc, N., Botton, E., Bérard, A., Rolland, S., Duffé, P., Carretero, Y., Delalande, C., Bouzayen, M., Brunel, D., Causse, M., 2011. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol, 156: 2244-2254.

 

Périn, C., Hagen, L.S., Giovinazzo, N., Besombes, D., Dogimont, C., Pitrat, M., 2002. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics, 266: 933-941.

 

Reumers, J., Rijk, P.D., Zhao, H., Liekens, A., Smeets, D., Cleary, J., Loo, P.V., Bossche, M.V., Catthoor, K., Sabbe, B., Despierre, E., Vergote, I., Hilbush, B., Lambrechts, D., Del-Favero, Jurgen., 2012. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol, 30: 61-68.

 

Rodríguez, G.R., Muños, S., Anderson, C., Sim, S.J., Michel, A., Causse, M., Francis, D., van der Knaap, E., 2011. Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol, 156: 275-285.

 

Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., Tabata, S., Oka, A., 2001. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 294: 1519-1521.

 

Sapkota, S., Chen, L.L., Yang, S.S, Hyma, K.E., Hwang, C.F., 2019. Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton’. Theor Appl Genet, 132: 137-147.

 

Sun, L., Li S.C., Jiang, J.F., Tang, X.P., Fan, X.C., Zhang, Y., Liu, J.H., Liu, C.H., 2020. New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map. BMC Plant Biol, 20: 302-315.

 

Tsaballa, A., Pasentsis, K., Tsaftaris, A.S., 2012. Τhe role of a Gibberellin 20-Oxidase gene in fruit development in pepper (Capsicum annuum). Plant Mol Biol Rep, 30: 556-565.

 

Varshney, R.K., Nayak, S.N., May, G.D., Jackson, S.A., 2009. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol, 27: 522-530.

 

Wang, N., Fang, L.C., Xin, H.P., Wang, L.J., Li, S.H., 2012. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol, 12: 148-163.

 

Wang, J.H., Su, K., Guo, Y.S., Xing, H.Y., Zhao, Y.H., Liu, Z.D., Li, K., Guo, X.W., 2017. Construction of a high-density genetic map for grape using specific length amplified fragment (SLAF) sequencing. PLoS ONE, 12: e0181728.

 

Wang, S.M., Li, W.J., Liu, Y.X., Li, H., Ma, Y., Zhang, Z.H., 2017. Comparative transcriptome analysis of shortened fruit mutant in woodland strawberry (Fragaria vesca) using RNA-Seq. J Integr Agric, 16: 828-844.

 

Wang, Z.T., Zhang, Z., Tang, H.X., Zhang, Q., Zhou, G.F., Li, X.G., 2019. High-density genetic map construction and QTL mapping of leaf and needling traits in Ziziphus jujuba Mill. Front Plant Sci, 10: 1424-1435.

 

Wang, H.l., Yan, A.L., Sun, L., Zhang, G.J., Wang, X.Y., Ren, J.C., Xu, H.Y., 2020. Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC Plant Biol, 20: 411-425.

 

Ward, J.A., Bhangoo, J., Fernández, F., Moore, P., Swanson, J., Viola, R., Velasco, R., Bassil, N., Weber, C.A., Sargent, D.J., 2013. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC genomics, 14: 1-14.

 

Wu, S., Clevengera, J.P., Sun, L., Visa, S., Kamiya, Y., Jikumaru, Y., Blakeslee, J., van der Knaapa, E., 2015. The control of tomato fruit elongation orchestrated by sun, ovate and fs8.1 in a wild relative of tomato. Plant Sci, 238: 95-104.

 
Wycislo, A.P., 2007. Characterization and molecular analysis of fruit shape in hybrid table grapes. Arkansas: University of Arkansas, [Master Dissertation].
 

Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J., Van Der Knaap, E., 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 319: 1527-1530.

 

Yang, S.S., Fresnedo-Ramírez, J., Sun, Q., Manns, D.C., Sacks, G.L., Mansfield, A.K., Luby, J.J., Londo, J.P., Reisch, B., Cadle-Davidson, L.E., Fennell, A.Y., 2016. Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PloS ONE, 11: e0149560.

 

Zhang, H., Liu, Z.J., Fan, X.C., Zhang, C., Cui, L.W., Liu, C.H., Fang, J.G., 2017. Genome-wide association mapping of berry shape traits via the reduced representation sequencing in grape. Acta Hortic Sin, 44: 1959-1968. (in Chinese).

 

Zhang, T.T., Xue, W.Y., Liu, N., Chen, S.X., 2022. Genetic and regulation mechanisms advancements of fruit shape in main fruit vegetables. Acta Hortic Sin, 49: 2189-2204. (in Chinese)

 

Zhou, H., Ma, R.J., Gao, L., Zhang, J.Y., Zhang, A.D., Zhang, X.J., Ren, F., Zhang, W.H., Liao, L., Yang, Q.R., Xu, S.L., Zhao, J.B., Yu, M.L., Jiang, Q., Korban, S.S., Han, Y.P., 2021. A 1.7Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach. Plant Biotechnol J, 19: 192-205.

Horticultural Plant Journal
Pages 729-742
Cite this article:
Wu Y, Wang Y, Fan X, et al. QTL mapping for berry shape based on a high-density genetic map constructed by whole-genome resequencing in grape. Horticultural Plant Journal, 2023, 9(4): 729-742. https://doi.org/10.1016/j.hpj.2022.11.005

305

Views

28

Downloads

4

Crossref

3

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 07 May 2022
Revised: 16 June 2022
Accepted: 22 July 2022
Published: 30 November 2022
© 2022 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return