AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Chlorophyllase is transcriptionally regulated by CsMYB308/CsDOF3 in young leaves of tea plant

Weimin LiuaSiyan LiuaKaiyue ZhangaMingwei XieaHaiwei SunbXiaoqin HuangaLixia Zhanga( )Min Lia( )
State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
Tea Research Institute of Tai'an Academy of Agricultural Sciences, Tai'an, Shandong 271001, China

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Chlorophyll contributes to tea coloration, which is an important factor in tea quality. Chlorophyll metabolism is induced by light, but the transcriptional regulation responsible for light-induced chlorophyll metabolism is largely unknown in tea leaves. Here, we characterized a chlorophyllase1 gene CsCLH1 from young tea leaves and showed it is essential for chlorophyll metabolism, using transient overexpression and silencing in tea leaves and ectopic overexpression in Arabidopsis. CsCLH1 was significantly induced by high light. The DOF protein CsDOF3, an upstream direct regulator of CsCLH1, was also identified. Acting as a nuclear-localized transcriptional factor, CsDOF3 responded for light and repressed CsCLH1 transcription and increased chlorophyll content by directly binding to the AAAG cis-element in the CsCLH1 promoter. CsDOF3 was able to physically interact with the R2R3-MYB transcription factor CsMYB308 and interfere with transcriptional activity of CsCLH1. In addition, CsMYB308 binds to the CsCLH1 promoter to enhance CsCLH1 expression and decrease chlorophyll content. CsMYB308 and CsDOF3 act as an antagonistic complex to regulate CsCLH1 transcription and chlorophyll in young leaves. Collectively, the study adds to the understanding of the transcriptional regulation of chlorophyll in tea leaves in response to light and provides a basis for improving the appearance of tea.

References

 

Ampomah-Dwamena, C., Thrimawithana, A.H., Dejnoprat, S., Lewis, D., Espley, R.V., Allan, A.C., 2019. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytol, 221: 309-325.

 

An, J.P., Wang, X.F., Li, Y.Y., Song, L.Q., Zhao, L.L., You, C.X., Hao, Y.J., 2018. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiol, 178: 808-823.

 

Benedetti, C.E., Arruda, P., 2002. Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol, 128: 1255-1263.

 

Buchert, A.M., Civello, P.M., Martinez, G.A., 2011. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J Plant Physiol, 168: 337-343.

 

Chen, J., Wu, S., Dong, F., Li, J., Zeng, L., Tang, J., Gu, D., 2021a. Mechanism underlying the shading-induced chlorophyll accumulation in tea leaves. Front Plant Sci, 12: 779819.

 

Chen, X., Wang, P., Gu, M., Lin, X., Hou, B., Zheng, Y., Sun, Y., Jin, S., Ye, N., 2021b. R2R3-MYB transcription factor family in tea plant (Camellia sinensis): genome-wide characterization, phylogeny, chromosome location, structure and expression patterns. Genomics, 113: 1565-1578.

 

Chen, Y., Fu, X., Mei, X., Zhou, Y., Cheng, S., Zeng, L., Dong, F., Yang, Z., 2017. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. J Proteonomics, 157: 10-17.

 

Clough, S.J., Bent, A.F., 2010. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16: 735-743.

 

Dong, C., Li, F., Yang, T., Feng, L., Zhang, S., Li, F., Li, W., Xu, G., Bao, S., Wan, X., Lucas, W.J., Zhang, Z., 2020. Theanine transporters identified in tea plants (Camellia sinensis L.). Plant J, 101: 57-70.

 

Fan, Z.Q., Ba, L.J., Shan, W., Xiao, Y.Y., Lu, W.J., Kuang, J.F., Chen, J.Y., 2018. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. Plant J, 96: 1191-1205.

 

Feng, L., Gao, M.J., Hou, R.Y., Hu, X.Y., Zhang, L., Wan, X.C., Wei, S., 2014. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chem, 155: 98-104.

 

Fornara, F., Panigrahi, K.C., Gissot, L., Sauerbrunn, N., Ruhl, M., Jarillo, J.A., Coupland, G., 2009. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell, 17: 75-86.

 

Harpaz-saad, S., Azoulay, T., Arazi, T., Benyaakov, E., Mett, A., Shiboleth, Y.M., Hortensteiner, S., Gidoni, D., Galon, A., Goldschmidt, E.E., 2007. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell, 19: 1007-1022.

 

Hu, X., Jia, T., Hrtensteiner, S., Tanaka, A., Tanaka, R., 2020. Subcellular localization of chlorophyllase 2 reveals it is not involved in chlorophyll degradation during senescence in Arabidopsis thaliana. Plant Sci, 290: 110314.

 

Hu, X., Makita, S., Schelbert, S., Sano, S., Ochiai, M., Tsuchiya, T., Hasegawa, S.F., Hörtensteiner, S., Tanaka, A., Tanaka, R., 2015. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiol, 167: 660-670.

 

Imaizumi, T., Schultz, T., Harmon, F., Ho, L., Kay, S., 2005. FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 309: 293-297.

 

Jiang, S.H., Chen, M., He, N.B., Chen, X.L., Wang, N., Sun, Q.G., Zhang, T.L., Xu, H.F., Fang, H.C., Wang, Y.C., 2019. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Hortic Res, 6: 40.

 

Kariola, T., Brader, G., Li, J., Palva, E.T., 2005. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell, 17: 282-294.

 

Kou, X., Watkins, C.B., Gan, S.S., 2012. Arabidopsis AtNAP regulates fruit senescence. J Exp Bot, 63: 6139-6147.

 

Li, N., Yang, Y., Ye, J., Lu, J., Zheng, X., Liang, Y., 2015. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant. Plant Growth Regul, 78: 253-262.

 

Li, Q., Huang, J., Liu, S., Li, J., Yang, X., Liu, Y., Liu, Z., 2011. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteome Sci, 9: 44.

 

Lin, Y.P., Wu, M.C., Charng, Y.Y., 2016. Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell, 28: 2974-2990.

 

Liu, G.F., Han, Z.X., Feng, L., Gao, L.P., Gao, M.J., Gruber, M.Y., Zhang, Z.L., Xia, T., Wan, X.C., Wei, S., 2017. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar 'Yu-Jin-Xiang' with an emphasis on catechin production. Sci Rep, 7: 45062.

 

Liu, W.J., Wang, Y.C., Sun, J.L., Jiang, H.Y., Xu, H.F., Wang, N., Jiang, S.H., Fang, H.C., Zhang, Z.Y., Wang, Y.L., Chen, X.S., 2019. MdMYBDL1 employed by MdHY5 increases anthocyanin accumulation via repression of MdMYB16/308 in apple. Plant Sci, 283: 32-40.

 

Marcel, N., Jana, M.B., Thomas, K., K, C.C., Falk, H., Thomas, M.A., Axel, A.B., 2019. Yeast two-hybrid screening reveals a dual function for the histone acetyltransferase GcnE by controlling glutamine synthesis and development in Aspergillus fumigatus. Curr Genet, 65: 523-538.

 

Peretz, Y., Mozes-Koch, R., Akad, F., Tanne, E., Czosnek, H., Sela, I., 2007. A universal expression/silencing vector in plants. Plant Physiol, 145: 1251-1263.

 

Porra, R.J., Thompson, W.A., Kriedemann, P.E., 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA-Bioenergetics, 975: 384-394.

 

Qi, T.C., Wang, J.J., Huang, H., Liu, B., Gao, H., Liu, Y.L., Song, S.S., Xie, D.X., 2015. Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell, 27: 1634-1649.

 

Rueda-Lopez, M., Crespillo, R., Canovas, F.M., Avila, C., 2008. Differential regulation of two glutamine synthetase genes by a single DOF transcription factor. Plant J, 56: 73-85.

 

Schenk, N., Schelbert, S., Kanwischer, M., Goldschmidt, E.E., Dörmann, P., Hörtensteiner, S., 2007. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett, 581: 5517-5525.

 

Shemer, T.A., Harpaz-Saad, S., Belausov, E., Lovat, N., Krokhin, O., Spicer, V., Standing, K.G., Eyal, G.Y., 2008. Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. Plant Physiol, 148: 108-118.

 

Shim, Y., Kang, K., An, G., Paek, N.C., 2019. Rice DNA-binding One Zinc Finger 24 (OsDOF24) delays leaf senescence in a jasmonate-mediated pathway. Plant Cell Physiol, 60: 2065-2076.

 

Shin, D., Lee, S., Kim, T.H., Lee, J.H., Park, J., Lee, J., Lee, J.Y., Cho, L.H., Choi, J.Y., Lee, W., Park, J.H., Lee, D.W., Ito, H., Kim, D.H., Tanaka, A., Cho, J.H., Song, Y.C., Hwang, D., Purugganan, M.D., Jeon, J.S., An, G., Nam, H.G., 2020. Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Nat Commun, 11: 2819.

 

Song, L.B., Ma, Q.P., Zou, Z.W., Sun, K., Yao, Y.T., Tao, J.H., Kaleri, N.A., Li, X.H., 2017. Molecular link between leaf coloration and gene expression of flavonoid and carotenoid biosynthesis in Camellia sinensis cultivar ‘Huangjinya’. Front Plant Sci, 8: 803.

 

Stracke, R., Werber, M., Weisshaar, B., 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 4: 447-456.

 

Szafranska, K., Reiter, R.J., Posmyk, M.M., 2017. Melatonin improves the photosynthetic apparatus in pea leaves stressed by paraquat via chlorophyll breakdown regulation and its accelerated de novo synthesis. Front Plant Sci, 8: 878.

 

Tanaka, A., Tanaka, R., 2006. Chlorophyll metabolism. Curr Opin Plant Biol, 9: 248-255.

 

Tian, Y.N., Zhong, R.H., Wei, J.B., Luo, H.H., Eyal, Y., Jin, H.L., Wu, L.J., Liang, K.Y., Li, Y.M., Chen, S.Z., Zhang, Z.Q., Pang, X.Q., 2021. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem Ⅱ repair. Mol Plant, 14: 1149-1167.

 

Tian, Y.Y., Wang, H.Y., Sun, P., Fan, Y.G., Qiao, M.M., Zhang, L.X., Zhang, Z.Q., 2019. Response of leaf color and the expression of photoreceptor genes of Camellia sinensis cv. Huangjinya to different light quality conditions. Sci Hortic, 251: 225-232.

 

Tsuchiya, T., Ohta, H., Okawa, K., Iwamatsu, A., Shimada, H., Masuda, T., Takamiya, K., 1999. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Natl Acad Sci U S A, 96: 15362-15367.

 

Uji, Y., Akimitsu, K., Gomi, K., 2017. Identification of OsMYC2-regulated senescence-associated genes in rice. Planta, 245: 1241-1246.

 

Wang, J., Chen, W., Wang, H., Li, Y., Wang, B., Zhang, L., Wan, X., Li, M., 2021a. Transcription factor CsDOF regulates glutamine metabolism in tea plants (Camellia sinensis). Plant Sci, 302: 110720.

 

Wang, P., Chen, S., Gu, M., Chen, X., Chen, X., Yang, J., Zhao, F., Ye, N., 2020a. Exploration of the effects of different blue LED light intensities on flavonoid and lipid metabolism in tea plants via transcriptomics and metabolomics. Int J Mol Sci, 21: 4606.

 

Wang, S., Shi, M., Zhang, Y., Xie, X., Sun, P., Fang, C., Zhao, J., 2021b. FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis. Biochem Biophys Res Co, 569: 93-99.

 

Wang, X., Li, J., Guo, J., Qiao, Q., Guo, X., Ma, Y., 2020b. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora (herbaceous peony) to Alternaria tenuissima. Hortic Res, 7: 57.

 

Wang, Y.C., Wang, N., Xu, H.F., Jiang, S.H., Fang, H.C., Su, M.Y., Zhang, Z.Y., Zhang, T.L., Chen, X.S., 2018. Auxin regulates anthocyanin biosynthesis through the Aux/IAA–ARF signaling pathway in apple. Hortic Res, 5: 1-11.

 
Waqas, M., Shahid, L., Shoukat, K., Aslam, U., Atif, R.M., 2020. Role of DNA-binding with one finger (DOF) transcription factors for abiotic stress tolerance in plants. In: Transcription Factors for Abiotic Stress Tolerance in Plants, pp. 1-14.
 

Ward, J.M., Cufr, C.A., Denzel, M.A., Neff, M.M., 2005. The dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis. Plant Cell, 17: 475-485.

 

Wu, Q., Chen, Z., Sun, W., Deng, T., Chen, M., 2016. De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan. Front Plant Sci, 7: 332.

 

Xu, H.F., Zou, Q., Yang, G.X., Jiang, S.H., Fang, H.C., Wang, Y.C., Zhang, J., Zhang, Z.Y., Wang, N., Chen, X.S., 2020a. MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Hortic Res, 7: 17.

 

Xu, P., Chen, H., Cai, W., 2020b. Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep, 21: e48967.

 

Xu, P., Su, H., Jin, R., Mao, Y.X., Xu, A.N., Cheng, H.Y., Wang, Y.F., Meng, Q., 2020c. Shading effects on leaf color conversion and biosynthesis of the major secondary metabolites in the albino tea cultivar ‘Yujinxiang’. J Agric Food Chem, 68: 2528-2538.

 

Yanagisawa, S., 2002. The Dof family of plant transcription factors. Trends Plant Sci, 7: 555-560.

 

Yanagisawa, S., Sheen, J., 1998. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell, 10: 75-89.

 

Yu, X., Hu, S., He, C., Zhou, J., Qu, F., Ai, Z., Chen, Y., Ni, D., 2019. Chlorophyll metabolism in postharvest tea (Camellia sinensis L.) leaves: variations in color values, chlorophyll derivatives, and gene expression levels under different withering treatments. J Agric Food Chem, 67: 10624-10636.

 

Zhang, X., Xiong, L., Luo, Y., Wen, B., Wang, K., Liu, Z., Huang, J.A., Li, J., 2021. Identification, molecular characteristic, and expression analysis of PIFs related to chlorophyll metabolism in tea plant (Camellia sinensis). Int J Mol Sci, 22: 10949.

 

Zhang, Y., Verhoeff, N.I., Chen, Z., Chen, S., Wang, M., Zhu, Z., Ouwerkerk, P.B., 2015. Functions of OsDof25 in regulation of OsC4PPDK. Plant Mol Biol, 89: 229-242.

 

Zhuo, M., Sakuraba, Y., Yanagisawa, S., 2020. A jasmonate-activated MYC2-Dof2.1-MYC2 transcriptional loop promotes leaf senescence in Arabidopsis. Plant Cell, 32: 242-262.

Horticultural Plant Journal
Pages 1162-1176
Cite this article:
Liu W, Liu S, Zhang K, et al. Chlorophyllase is transcriptionally regulated by CsMYB308/CsDOF3 in young leaves of tea plant. Horticultural Plant Journal, 2023, 9(6): 1162-1176. https://doi.org/10.1016/j.hpj.2022.12.001

224

Views

6

Downloads

5

Crossref

3

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 05 July 2022
Revised: 27 September 2022
Accepted: 02 November 2022
Published: 15 December 2022
© 2023 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return