AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Integration of root architecture, root nitrogen metabolism, and photosynthesis of ‘Hanfu’ apple trees under the cross-talk between glucose and IAA

Bianbin QiaXin ZhangaZhiquan MaobSijun Qina( )Deguo Lva( )
College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
College of Horticultural Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Sugars and auxin have important effects on almost all phases of plant life cycle, which are so fundamental to plants and regulate similar processes. However, little is known about the effect of cross-talk between glucose and indole-3-acetic acid (IAA) on growth and development of apple trees. To examine the potential roles of glucose and IAA in root architecture, root nitrogen (N) metabolism and photosynthetic capacity in ‘Hanfu’ (Malus domestica), a total of five treatments was established: single application of glucose, IAA, and auxin polar transport inhibitor (2, 3, 5-triiodobenzoic acid, TIBA), combined application of glucose with TIBA and that of glucose with IAA. The combined application of glucose with IAA improved root topology system and endogenous IAA content by altering the mRNA levels of several genes involved in root growth, auxin transport and biosynthesis. Moreover, the increased N metabolism enzyme activities and levels of genes expression related to N in roots may suggest higher rates of transformation of nitrate (NO3--N) into amino acids application of glucose and IAA. Contrarily, single application of TIBA decreased the expression levels of auxin transport gene, hindered root growth and decreased endogenous IAA content. Glucose combined with TIBA application effectively attenuated TIBA-induced reductions in root topology structure, photosynthesis and N metabolism activity, and mRNA expression levels involved in auxin biosynthesis and transport. Taken together, glucose application probably changes the expression level of auxin synthesis and transport genes, and induce the allocation of endogenous IAA in root, and thus improves root architecture and N metabolism of root in soil with deficit carbon.

References

 

Ali, B., Sabri, A.N., Ljung, K., Hasnain, S., 2009. Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol, 48: 542-547.

 

Ali, G.S., Norman, D., El-Sayed, A.S., 2015. Soluble and volatile metabolites of plant growth-promoting rhizobacteria (PGPRs). Adv Bot Res, 75: 241-284.

 

Bassirirad, H., 2006. Root system characteristics and control of nitrogen uptake. J Crop Improv, 15: 25-51.

 

Beidler, K.V., Taylor, B.N., Strand, A.E., Cooper, E.R., Schonholz, M., Pritchard, S.G., 2015. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. New Phytol, 205: 1153-1163.

 

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., Friml, J., 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115: 591-602.

 
Bergmeyer, H.U., Bergmeyer, J., Grassl, M., 1983. Methods of enzymatic analysis, volume 2: samples, reagents, assessment of results. Deerfield Beach, Florida, Verlag Chemie.
 
Bergmeyer, H.U., Bernt, E., 1974. Methods for determination of enzyme activity. In: Bergmeyer, H.U., (Eds) Methods of enzymatic analysis. Academic Press, New York, pp 837-853.
 

Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., Scheres, B., 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433: 39-44.

 

Bräutigam, A., Gagneul, D., Weber, A.P.M., 2007. High-throughput colorimetric method for the parallel assay of glyoxylic acid and ammonium in a single extract. Anal Biochem, 362: 151-153.

 

Cheng, W.X., 2009. Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biol Biochem, 41: 1795-1801.

 

de Jong, F., Thodey K., Lejay L.V., Bevan M. W., 2014a. Glucose elevates NITRATE TRANSPORTER2. 1 protein levels and nitrate transport activity independently of its HEXOKINASE1-mediated stimulation of NITRATE TRANSPORTER2. 1 expression. Plant Physiol, 164: 308-320.

 

de Jong, M., George, G., Ongaro, V., Williamson, L., Willetts, B., Ljung, K., McCulloch, H., Leyser, O., 2014b. Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol, 166: 384-395.

 

DiDonato, R.J., Arbuckle, E., Buker, S., Shee, J., Tobar, J., Totong, R., Grisafi, P., Fink, G.R., Celenza, J.L., 2004. Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J, 2004, 37: 340-353.

 

Dijkstra, F.A., Bader, N.E., Johnson, D.W., Cheng, W.X., 2009. Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability? Soil Biol Biochem, 41: 1080-1087.

 

Dong, J.F., Wang, S.P., Niu, H.S., Cui, X.Y., Li, L.F., Pang, Z., Zhou, S.T., Wang, K., 2020.Responses of soil microbes and their interactions with plant community after nitrogen and phosphorus addition in a Tibetan alpine steppe. J Soils Sediments, 20: 2236-2247.

 

Duca, D., Lorv, J., Patten, C.L., Rose, D., Glick, B.R., 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie Leeuwenhoek, 106: 85-125.

 

Fischer, K., Barbier, G.G., Hecht, H.J., Mendel, R.R., Campbell, W.H., Schwarz, G., 2005. Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. Plant Cell, 17: 1167-1179.

 

Fitter, A.H., 1987. An architectural approach to the comparative ecology of plant root systems. New Phytol, 106: 61-77.

 

Fitter, A.H., Stickland, T.R., 1991. Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol, 118: 383-389.

 
Food and Agriculture Organization of the United Nations (FAOSTAT), 2019. Disponivel em. http://www.fao.org/faostat/en/#home.
 

Fürst, P., Pollack, L., Graser, T.A., Godel, H., Stehle, P., 1990. Appraisal of four pre-column derivatization methods for the high-performance liquid chromatographic determination of free amino acids in biological materials. J Chromatogr A, 499: 557-569.

 

Gao, L.W., Lyu, S.W., Tang, J., Zhou, D.Y., Hou, L.X., Zhang, C.W., 2017. Genome-wide analysis of auxin transport genes identifies the hormone responsive patterns associated with leafy head formation in Chinese cabbage. Sci Rep, 7: 1-13.

 

Garay-Arroyo, A., De La Paz, S.M., García-Ponce, B., Azpeitia, E., Álvarez-Bullya, E.R., 2012. Hormone symphony during root growth and development. Dev Dyn, 241: 1867-1885.

 

Gasic, K., Hernandez, A., Korban, S.S., 2004. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep, 22: 437e438.

 

González-Hernández, A.I., Scalschi, L., García-Agustín, P., Camańes, G., 2020. Exogenous carbon compounds modulate tomato root development. Plants, 9: 837.

 

Gu, J.R., Dong, M.H., Jiang, Y., Cao, P.H., Wang, D.M., Song, Y.S., Chen, P.F., 2020. Exogenous glucose and sucrose application effects on differentiation and degradation of spikelets of large panicle hybrid japonica rice. Int J Agric Biol, 24: 247-254.

 

Guinn, G., Brummett, D.L., 1993. Leaf age, decline in photosynthesis, and changes in abscisic acid, indole-3-acetic acid, and cytokinin in cotton leaves. Field Crop Res, 32: 269-275.

 

Gunina, A., Kuzyakov, Y., 2015. Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biol Biochem, 90: 87-100.

 

Gupta, A., Singh, M., Laxmi, A., 2015. The interaction between glucose and brassinosteroid signal transduction pathway in Arabidopsis thaliana. Plant Physiol, 168:307-320.

 

Hageman, R.H., Reed, A.J., Femmer, R.A., Sherrard, J.H., Dalling, M.J., 1980. Some new aspects of the in vivo assay for nitrate reductase in wheat (Triticum aestivum L.) leaves: I. REEVALUATION OF NITRATE POOL SIZES. Plant Physiol, 65: 27-32.

 

Hamilton, III.E.W., Frank, D.A., 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82: 2397-2402.

 

Han, Y.L., Song, H.X., Liao, Q., Yu, Y., Jian, S.F., Lepo, J.E., Liu, Q., Rong, X.M., Tian, C., Zeng, J., Guan, C.Y., Ismail, A.M., Zhang, Z.H., 2016. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiol, 170: 1684-1698.

 

Helariutta, Y., Fukaki, H., Wysocka-Diller, J., NaKajima, K., Jung, J., Sena, G., Hauser, M.T., Benfey, P.N., 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 101: 555-567.

 

Iglesias-Bartolomé, R., Gonzalez, C.A., Kenis, J.D., 2004. Nitrate reductase dephosphorylation is induced by sugars and sugar-phosphates in corn leaf segments. Physiol Plantarum, 122: 62-67.

 

Ioio, R.D., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M.T., Aoyama, T., Costantino, P., Sabatini, S., 2008. A genetic framework for the control of cell division and differentiation in the root meristem. Science, 322: 1380-1384.

 

Ji, Q., Zhao, S.X., Li, Z.H., Ma, Y.Y., Wang, X.D., 2016. Effects of biochar-straw on soil aggregation, organic carbon distribution, and wheat growth. Agron J, 108: 2129-2136.

 

Jin, X.H., Huang, H., Wang, L., Sun, Y., Dai, S.L., 2016. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars. Front Plant Sci, 7: 1307.

 

Kircher, S., Schopfer, P., 2012. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci USA, 109: 11217-11221.

 

Krapp, A, Berthomé, R, Orsel, M, Mercey-Boutet, S., Yu, A., Castaings, L., Elftieh, S., Major, H., Renou, J.P., Daniel-Vedele, F., 2011. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol, 157: 1255-1282.

 

Krapp, A., 2015. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol, 25: 115-122.

 

Krouk, G., Lacombe, B., Bielach, A., Perrine-Walker, F., Malinska, K., Mounier, E., Hoyerova, K., Tillard, P., Leon, S., Ljung, K., Zazimalova, E., Benkova, E., Nacry, P., Gojon, A., 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell, 18: 927-937.

 

Kushwah, S., Jones, A.M., Laxmi, A., 2011. Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth. Plant Physiol, 156: 1851-1866.

 

Kushwah, S., Laxmi, A., 2014. The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana. Plant Cell Environ, 37: 235-253.

 

Kushwah, S., Laxmi, A., 2017. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development. Plant Signal Behav, 12: e1312241.

 

Kuzyakov, Y., Xu, X., 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol, 198: 656-669.

 

Lasswell, J., Rogg, L.E., Nelson, D.C., Rongry, C., Bartel, B., 2000. Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell, 12: 2395-2408.

 

Lavenus, J., Goh, T., Roberts, I., Guyomarc’h, S., Lucas, M., Smet, I. Fukaki, H., Beeckman, T., Bennett, M., Laplaze, L., 2013. Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci, 18: 450-458.

 

Lejay, L., Gansel, X., Cerezo, M., Tillard, P., Müller, C., Krapp, A., Wirén, N., Daniel-Vedele, F., Goion, A., 2003. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell, 15: 2218-2232.

 

Li, B.H., Li, Q., Su, Y.H., Chen, H., Xiong, L.M., Mi, G.H., Kronzucker, H.J., Shi, W.M., 2011. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis. Plant Cell Environ, 34: 933-946.

 

Li, H.K., Zhang, G.J., Zhao, Z.Y., Li, K.R., 2007. Effects of interplanting of herbage on soil nutrient of non-irrigated apple orchard in the Loess Plateau. Acta Hortic Sin, 34: 477-480. (in Chinese)

 

Li, X.J., Wang, X., Wan, L.L., Zhang, Y.Y., Li, N., Li,D.S., Zhou, Q.X., 2016. Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells. J Chem Technol Biotechnol, 91: 267-275.

 

Lilley, J.L.S., Gee, C.W., Sairanen, I., Ljung K., Nemhauser, J.L., 2012. An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. Plant Physiol, 160: 2261-2270.

 

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402-408.

 

Loulakakis, C.A., Roubelakis-Angelakis, K.A., 1990. Intracellular localization and properties of NADH-glutamate dehydrogenase from Vitis vinifera L.: purification and characterization of the major leaf isoenzyme. J Exp Bot, 41: 1223-1230.

 

Luo, J., Zhou, J., Li, H., Shi, W.G., Polle, A., Lu, M.Z., Sun, X.M., Luo, Z.B., 2015, Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol, 35: 1283-1302.

 

Luo, Y.L., Bi, T.J., Li, D., Su, Z.L., Tao, C., Luo, Y.J., Li, Q.J., 2012. Effects of indole-3-acetic acid and auxin transport inhibitors on the style curvature of three Alpinia species (Zingiberaceae). Acta Physiol Plant, 34: 2019-2025.

 

Malamy, J.E., 2005. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ, 28: 67-77.

 

Marhavý, P., Bielach, A., Abas, L., Abuzeineh, A., Duclercq, J., Tanaka, H., Pařezová, M., Petrášek, J., Friml, J., Kleine-Vehn, J., Benková, E., 2011. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell, 2011, 21: 796-804.

 

Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M., Grandijean, O., Kronenberger, J., Valadier, M.H., Feraud, M., Jouglet, T., 2006. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol, 140: 444-456.

 

Meena, V.S., Meena, S.K., Verma, J.P., Kumar, A., Aeron, A., Mishra, P.K., Bisht, J.K., Pattanayaka, A., Naveed, M., Dotaniya, M.L., 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol Eng, 107: 8-32.

 

Meister, R., Rajani, M.S., Ruzicka, D., Schachtman, D.P.S, 2014. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci, 19: 779-788.

 

Miflin, B.J., Habash, D.Z., 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot, 53: 979-987.

 

Mishra, B.S., Singh, M., Aggrawal, P., Laxmi, A., 2009. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE, 4: e4502.

 

Moran, R., 1982. Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiology, 69: 1376-1381.

 

Ogawa, T., Fukuoka, H., Yano, H., Ohkawa, Y., 1999. Relationships between nitrite reductase activity and genotype-dependent callus growth in rice cell cultures. Plant Cell Rep, 18: 576-581.

 

Pandey, D.M., Goswami, C.L., Kumar, B., Jain, S., 2000. Hormonal regulation of photosynthetic enzymes in cotton under water stress. Photosynthetica, 38: 403-407.

 

Patten, C.L., Blakney, A.J.C., Coulson, T.J.D., 2013. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol, 39: 395-415.

 

Patten, C.L., Glick, B.R., 1996. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol, 42: 207-220.

 

Patterson, K., Cakmak, T., Cooper, A., Lager, I., Rasmusson, G.A., Escobar, M.A., 2010. Distinct signalling pathways and transcriptome response signatures differentiate ammonium-and nitrate-supplied plants. Plant Cell Environ, 33: 1486-1501.

 

Peng, Q., Wang, H.Q., Tong, J.H., Kabir, M.H., Huang, Z.G., Xiao, L.T., 2013. Effects of indole-3-acetic acid and auxin transport inhibitor on auxin distribution and development of peanut at pegging stage. Sci Hortic, 162: 76-81.

 

Qiao, N., Xu, X.L., Hu, Y.H., Blagodatskaya, E., Liu, Y.W., Scharfer, D., Kuzyakov, Y., 2016. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum. Sci Rep, 6: 19865.

 

Ripullone, F., Grassi, G., Lauteri, M., Borghetti, M., 2003. Photosynthesis–nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus × euroamericana in a mini-stand experiment. Tree Physiol, 23: 137-144.

 

Sairanen, I., Novák, O., Pěnčík, A., Ikeda, Y., Jones, B., Sandberg, G., Ljung, K., 2012. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell, 24: 4907-4916.

 

Schloter, M., Nannipieri, P., Sørensen, S.J., van Elass, J.D., 2018. Microbial indicators for soil quality. Biol Fertil Soils, 54: 1-10.

 

Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, A.I., Kleber, M., Kögel-Knabner, M., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478: 49-56.

 

Sharma, A., Saha, T.N., Arora A., Shah, R., Nain, L., 2017. Efficient microorganism compost benefits plant growth and improves soil health in Calendula and Marigold. Hortic Plant J, 3: 67-72.

 

She, X.P., Song, X.G., 2006. Cytokinin-and auxin-induced stomatal opening is related to the change of nitric oxide levels in guard cells in broad bean. Physiol Plant, 128: 569-579.

 

Shuai, B., Reynaga-Pena, C.G., Springer, P.S., 2002. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 129: 747-761.

 

Stitt, M., 1999. Nitrate regulation of metabolism and growth. Curr Opin Plant Biol, 2: 178-186.

 

Stokes, M.E., Chattopadhyay, A., Wilkins, O., Nambara, E., Campbell, M.M., 2013. Interplay between sucrose and folate modulates auxin signaling in Arabidopsis. Plant Physiol, 162: 1552-1565.

 

Wang, G.S., Yin, C.M., Pan, F.B., Wang, X.B., Li, X., Wang, Y.F., Wang, J.Z., Tian, C.P., Chen, J., Mao, Z.Q., 2018. Analysis of the fungal community in apple replanted soil around Bohai Gulf. Hortic Plant J, 4: 175-181.

 

Wang, H., Ma, F., Cheng, L., 2010. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of ‘Honeycrisp’apple (Malus domestica Borkh) with excessive accumulation of carbohydrates. Planta, 232: 511-522.

 

Wang, Y.Y., Hsu, P.K., Tsay, Y.F., 2012. Uptake, allocation and signaling of nitrate. Trends Plant Sci, 17: 458-467.

 

Whitbread, A., Blair, G., Konboon, Y., Konboon, Y., Lefroy, R., Nakalang, K., 2003. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agric Ecosyst Environ, 100: 251-263.

 

Wray, J.L., 1993. Molecular biology, genetics and regulation of nitrite reduction in higher plants. Physiol Plantarum, 89: 607-612.

 

Xiong, Y., McCormack M., Li L., Hall Q., Xiang C.B., Sheen J., 2013. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature, 496: 181-186.

 

Xu, G.H., Fan X.R., Miller A.J., 2012. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 63: 153-182.

 

Xu, L.X., Xun, M., Song, J.F., Tian, X.Z., Yin, F.P., Huang, W.N., Zhang, W.W., Yang, H.Q., 2020. Effect of soil textures and rootstock on rhizosphere microorganism and carbon source utilization of apple roots. Acta Hortic Sin, 47: 1530-1540. (in Chinese)

 

Yang, Y., Wang, N., Guo, X.Y., Zhang, Y., Ye, B.P., 2017. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PloS ONE, 12: e0178425.

 

Yin, C.X., Wu, Q.R., Zeng, H.L., Xia, K., Xu, J.W., Li, R.W., 2011. Endogenous auxin is required but supraoptimal for rapid growth of rice (Oryza sativa L.) seminal roots, and auxin inhibition of rice seminal root growth is not caused by ethylene. J Plant Growth Regul, 30: 20-29.

 

Yoshida, S., Kuriyama, H., Fukuda, H., 2005. Inhibition of transdifferentiation into tracheary elements by polar auxin transport inhibitors through intracellular auxin depletion. Plant Cell Physiol, 46: 2019-2028.

 

Yuan, T.T., Xu, H.H., Zhang, K.X., Guo, T.T., Lu, Y.T., 2014. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ, 37: 1338-1350.

 

Yue, P.T, Wang, Y.N., Bu, H.D., Li, X.Y., Yuan, H., Wang, A.D., 2019. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biol Technol, 157: 110955.

 

Zhang, L.X., Zhou, J., Zhao, Y.G., Zhai, Y.Y., Wang, K., Kumar, A.A., Sivapatham, P., 2013. Optimal combination of chemical compound fertilizer and humic acid to improve soil and leaf properties, yield and quality of apple (Malus domestica) in the loess plateau of China. Pak J Bot, 45: 1315-1320.

 

Zheng, X.D., Xi, X.L., Li, Y.Q., Sun, Z.J., Ma, C.Q., Han, M.S., Li, S.X., Tian, Y.K., Wang, C.H., 2022. Effects and regulating mechanism of exogenous brassinosteroids on the growth of Malus hupehensis under saline-alkali stress. Acta Hortic Sin, 49: 1404-1414. (in Chinese)

 

Zheng, Z.L., 2009. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav, 4: 584-591.

 

Zhou, W.J., Qin, X., Lyu, D.G., Qin, S.J., 2021. Effect of glucose on the soil bacterial diversity and function in the rhizosphere of Cerasus sachalinensis. Hortic Plant J, 7: 307-317.

Horticultural Plant Journal
Pages 631-644
Cite this article:
Qi B, Zhang X, Mao Z, et al. Integration of root architecture, root nitrogen metabolism, and photosynthesis of ‘Hanfu’ apple trees under the cross-talk between glucose and IAA. Horticultural Plant Journal, 2023, 9(4): 631-644. https://doi.org/10.1016/j.hpj.2022.12.009

245

Views

10

Downloads

5

Crossref

4

Web of Science

6

Scopus

2

CSCD

Altmetrics

Received: 06 May 2022
Revised: 02 August 2022
Accepted: 27 November 2022
Published: 21 December 2022
© 2023 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return