AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Melatonin mitigates cold-induced damage to pepper seedlings by promoting redox homeostasis and regulating antioxidant profiling

Muhammad Ahsan Altafa,b,c,1Yuanyuan Haoa,b,c,1Huangying Shua,bWeiheng Jina,bChuhao Chena,bLin Lia,bYu Zhanga,bMuhammad Ali Mumtaza,bHuizhen Fua,bShanhan Chenga,bGuopeng Zhua,bZhiwei Wanga,b,c( )
Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, Hainan 572025, China
Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, Hainan 570228, China
Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China

1 These authors contributed equally to this work.

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

This study assessed the influence of exogenous ME in the mitigation of cold damage in pepper seedlings. Melatonin (ME) is a dynamic molecule that helps plants cope with stress in several ways. Cold stress (CS) is one of the most important environmental factors that restrict plant growth and yield. Pepper (Capsicum annuum L.) is a valuable commercial crop, highly sensitive to CS. Thus, identifying an efficient strategy to mitigate cold damage is critical for long-term pepper production. For this purpose, the roots of pepper seedlings were pretreated with ME (5 μmol · L−1) and exposed to CS for 7 d. The results indicated that CS suppressed pepper growth, hampered photosynthetic capacity, and damaged root architecture in pepper plants. In contrast, the production of reactive oxygen species (ROS), malondialdehyde (MDA), electrolyte leakage (EL), proline, and soluble sugars were enhanced in plants under CS. ME (5 μmol · L−1) pretreatment reduced the negative effects of CS by recovering plant growth, root traits, gas exchange elements, and pigment molecules compared to CS control treatment. Furthermore, ME application efficiently reduced oxidative stress markers [hydrogen peroxide (H2O2), superoxide ion (O2·–), EL, and MDA] while increasing proline and soluble sugar content in pepper leaves. ME application combined with CS further increased antioxidant enzymes and related gene expression. Collectively, our results confirmed the mitigating potential of ME supplementation for CS by maintaining pepper seedling growth, improving the photosynthesis apparatus, regulating pigments, and osmolyte content.

References

 

Ahammed, G.J., Xu, W., Liu, A., Chen, S., 2018. COMT1 silencing aggravates heat stress- induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front Plant Sci, 9: 998.

 

Airaki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M., Barroso, J.B., Del Rio, L.A., Palma, J.M., Corpas, F.J., 2012. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ, 35: 281-295.

 

Altaf, M.A., Shahid, R., Altaf, M.A., Ren, M.X., Tan, K., Xiang, W.Q., Qadir, A., Shakoor, A., Altaf, M.M., 2019. Effect of NPK, organic manure and their combination on growth, yield and nutrient uptake of chilli (Capsicum annum L.). Horticul Int J, 3: 217-222.

 

Altaf, M.A., Shahid, R., Ren, M.X., Altaf, M.M., Khan, L.U., Shahid, S., 2021b. Melatonin alleviates salt damage in tomato seedling: a root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. Sci Hortic, 285: 110145.

 

Altaf, M.A., Shahid, R., Ren, M.X., Mora-Poblete, F., Arnao, M.B., Naz, S., 2021a. Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses. Physiol Plantarum, 172: 820-846.

 

Altaf, M.A., Shahid, R., Ren, M.X., Naz, S., Altaf, M.M., Qadir, A., 2020. Exogenous melatonin enhances salt stress tolerance in tomato seedlings. Biol Plantar, 64: 604-615.

 

Altaf, M.A., Shu, H., Hao, Y., Mumtaz, M.A., Lu, X., Wang, Z., 2022b. Melatonin affects the photosynthetic performance of pepper (Capsicum annuum L.) seedlings under cold stress. Antioxidants, 11: 2414.

 

Altaf, M.A., Shu, H., Hao, Y., Zhou, Y., Mumtaz, M.A., Wang, Z., 2022a. Vanadium toxicity induced changes in growth, antioxidant profiling, and vanadium uptake in pepper (Capsicum annum L.) seedlings. Horticulturae, 8: 28.

 

Arnao, M.B., Hernández-Ruiz, J., 2019. Melatonin: a new plant hormone and/or a plant master regulator?. Trends Plant Sci, 24: 38-48.

 

Arnao, M.B., Hernández Ruiz, J., 2007. Melatonin promotes adventitious and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res, 42: 147-152.

 

Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 24: 1.

 

Bajwa, V.S., Shukla, M.R., Sherif, S.M., 2014. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res, 56: 238-245.

 

Bates, L.S., Waldren, R.P., 1973. Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.

 

Batool, S., Altaf, M.A., 2017. Plant growth promoting rhizobacteria (PGPR) reduces application rates of fertilizers in chili (Capsicum frutescens L.) cultivation. J Hortic For, 4: 2376-0354.

 

Cao, Q., Li, G., Cui, Z., Yang, F., Jiang, X., Diallo, L., Kong, F., 2019. Seed priming with melatonin improves the seed germination of waxy maize under chilling stress via promoting the antioxidant system and starch metabolism. Sci Rep: 9: 1-12.

 

Cao, S., Shao, J., Shi, L., Xu, L., Shen, Z., Chen, W., Yang, Z., 2018. Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Sci Rep, 8: 1-11.

 

Devi, R., Behera, B., Raza, M.B., Mangal, V., Altaf, M.A., Kumar, R., Kumar, A., Tiwari, R.K., Lal, M.K., Singh, B., 2021. An insight into microbes mediated heavy metal detoxification in plants: a review. J Soil Sci Plant Nutr, 18: 1-23.

 

Ding, F., Liu, B., Zhang, S., 2017. Exogenous melatonin ameliorates cold-induced damage in tomato plants. Sci Hortic, 219: 264-271.

 

Dou, L., Sun, Y., Li, S., 2021. Transcriptomic analyses show that 24-epibrassinolide (EBR) promotes cold tolerance in cotton seedlings. PLoS One, 16: 1-21.

 

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Anal Chem, 28: 350-356.

 

Fan, J., Hu, Z., Xie, Y., Chan, Z., Chen, K., Amombo, E., Chen, L., Fu, J., 2015. Alleviation of cold damage to photosystem II and metabolisms by melatonin in bermudagrass. Front Plant Sci, 6: 925.

 

Griffith, O.W., 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem, 106: 207-212.

 

Guo, W.L., Chen, R.G., Gong, Z.H., Yin, Y.X., Ahmed, S.S., He, Y.M., 2012. Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum L.) leaves subjected to chilling stress. Genet Mol Res, 11: 4063-4080.

 

Han, Q.H., Huang, B., Ding, C.B., Zhang, Z.W., Chen, Y.E., Hu, C., Zhou, L.J., Huang, Y., Liao, J.Q., Yuan, S., 2017. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front Plant Sci, 8: 785.

 

Hu, Z., Fan, J., Xie, Y., 2016. Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiol Biochem, 100: 94-104.

 

Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., Wang, L., 2018. Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci, 9: 393.

 

Imtiaz, M., Mushtaq, M.A., Rizwan, M.S., Arif, M.S., Yousaf, B., Ashraf, M., Shuanglian, X., Rizwan, M., Mehmood, S., Tu, S., 2016. Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium. Environ Sci Pollut Res, 23: 19787-19796.

 

Iqbal, Z., Sarkhosh, A., Balal, R.M., Rauf, S., Khan, N., Altaf, M.A., Camara-Zapata, J.M., Garcia-Sanchez, F., Shahid, M.A., 2021. Silicon Nanoparticles mitigate hypoxia-induced oxidative damage by improving antioxidants activities and concentration of osmolytes in southern highbush blueberry plants. Agronomy, 11: 2143.

 

Jahan, M.S., Guo, S., Baloch, A.R., Sun, J., Shu, S.; Wang., Y., 2020. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf. 197, 110593.

 

Jahan, M.S., Shu, S., Wang, Y., Chen, Z., He, M., Tao, M., Guo, S., 2019. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol,19: 1-16.

 

Jahan, M.S., Shu, S., Wang, Y., Hasan, M., El-Yazied, A.A., Alabdallah, N.M., 2021. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways. Front Plant Sci, 12: 381.

 

Korkmaz, A., Değer Ö., Szafrańska, K., Köklü, Ş., Karaca, A., Yakupoğlu, G., Kocacinar, F., 2021. Melatonin effects in enhancing chilling stress tolerance of pepper. Sci Hortic, 289: 110434.

 

Korkmaz, A., Karaca, A., Kocacinar, F., Cuci, Y., 2017. The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress. J Agric Sci, 23: 167-176.

 

Korkmaz, A., Korkmaz, Y. and Demirkıran, A.R., 2010. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ Exp Bot, 67: 495-501.

 

Li, B., Zhang, C., Cao, B., Qin, G., Wang, W., Tian, S., 2012. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids, 43: 2469-2480.

 

Li, H., Chang, J., Zheng, J., Dong, Y., Liu, Q., Yang, X., Wei, C., Zhang, Y., Ma, J., Zhang, X., 2017. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci Rep, 7: 1-15.

 

Li, H., Dong, Y., Chang, J., He, J., Chen, H., Liu, Q., Wei, C., Ma, J., Zhang, Y., Yang, J., Zhang, X., 2016. High-throughput microRNA and mRNA sequencing reveals that microRNAs may be involved in melatonin-mediated cold tolerance in Citrullus lanatus L. Front Plant Sci, 7: 1231.

 

Li, J., Arkorful, E., Cheng, S., Zhou, Q., Li, H., Chen, X., Sun, K., Li, X., 2018. Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant [Camellia sinensis (L.) O. Kuntze]. Sci Hortic, 238: 356-362.

 

Li, J., Sohail, H., Nawaz, M.A., Liu, C., Yang, P., 2021. Physiological and proteomic analyses reveal that brassinosteroids application improves the chilling stress tolerance of pepper seedlings. Plant Growth Regul, 96: 1-15.

 

Li, Q., Li, L.L., Hou, J., Luo, R.R., Wang, R.D., Hu, J.B., Huang, S., 2022. Advances on mechanism of cucurbit crops in response to low-temperature stress. Acta Hortic Sin, 49: 1382-1394. (in Chinese).

 

Liang, C., Li, A., Yu, H., Li, W., Liang, C., Guo, S., Zhang, R., Chu, C., 2017. Melatonin regulates root architecture by modulating auxin response in rice. Front Plant Sci, 8: 134.

 
Liao, D.Q., Chen, Y.L., Qi, J.J., Zhang, H.L., Sun, P., Chen, C.X., Li, X.E., 2023. Zhang, H.L., Sun, P., Chen, C.X., Li, X.E., 2023. Temporal transcriptomics reveal the molecular mechanism of dormancy and germination regulated by temperature in Paris polyphylla seed. Hortic Plant J, 9: 848-866.
 

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25: 402-408.

 

Logan, B.A., Demmig-Adam, B., Adams, III W.W., 1998. Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. upon a sudden increase in growth PPFD in the field. J Exp Bot, 49: 1881-1888.

 

Marta, B., Szafrańska, K., Posmyk, M.M., 2016. Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci, 7: 575.

 

Meng, F., Xiang, D., Zhu, J., Li, Y., Mao, C., 2019. Molecular mechanisms of root development in rice. Rice,12: 1-10.

 

Moustafa-Farag, M., Almoneafy, A., Mahmoud, A., Elkelish, A., Arnao, M.B., Li, L., Ai, S., 2020. Melatonin and its protective role against biotic stress impacts on plants. Biomolecules, 10: 54.

 

Nabaei, M., Amooaghaie, R., 2019. Nitric oxide is involved in the regulation of melatonin-induced antioxidant responses in Catharanthus roseus roots under cadmium stress. Botany, 97: 681-690.

 

Nawaz, M.A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R.J., Niu, M., 2016. Melatonin: current status and future perspectives in plant science. Front Plant Sci, 6: 1230.

 

Nawaz, M.A., Jiao, Y., Chen, C., Shireen, F., Zheng, Z., Imtiaz, M., 2018. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol, 220: 115-127.

 

Ning, J.F., Ai, S.Y., Yang, S.H., Cui, L.H., Chen, Y., Sun, L.L., 2015. Physiological and antioxidant responses of Basella alba to NaCl or Na2SO4 stress. Acta Physiol Plant, 37: 126.

 

Postma, J.A., Lynch, J.P., 2012. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash poly cultures. Ann Bot, 110: 521-534.

 

Reiter, R.J., Rosales-Corral, S., Tan, D.X., Jou, M.J., Galano, A., Xu, B., 2017. Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci, 74: 3863-3881.

 

Rogers, E.D., Benfey, P.N., 2015. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol, 32: 93-98.

 

Saleem, M., Fariduddin, Q., Janda, T., 2021. Multifaceted role of salicylic acid in combating cold stress in plants: a review. J Plant Growth Regul, 40: 464-485.

 

Santosh, K.B., Prianka, H., 2020. Melatonin plays multifunctional role in horticultural crops against environmental stresses: a review. Environ Exp Bot, 176, 104063.

 

Shi, H.T., Jiang, C., Ye, T.T., Tan, D.X., Reiter, R.J., Zhang, H., 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress tolerance resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot, 66: 681-694.

 

Siddiqui, M.H., Alamri, S., Khan, M.N., Corpas, F.J., Al-Amri, A.A., Alsubaie, Q.D., Ali, H.M., Kalaji, H.M., Ahmad, P., 2020. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater, 398: 122882.

 

Song, L.J., Tan, Z., Zhang, W.W., Li, Q., Jiang, Z.X., Shen, S.X., Luo, S.X., Chen, X.P., 2023. Exogenous melatonin improves the chilling tolerance and preharvest fruit shelf life in eggplant by affecting ROS- and senescence-related processes. Hortic Plant J, 9: 523-554.

 

Sun, S., Wen, D., Yang, W., Meng, Q., Shi, Q., Gong, B., 2020. Overexpression of cafeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant. J Plant Growth Regul, 39: 1221-1235.

 

Tang, M.J., Xu, J., Lin, R., Song, J.N., Yu, J.Q., Zhou, Y.H., 2022. Advances in physiological and molecular mechanism of tomato responses to light and temperature stress. Acta Hortic Sin, 49: 2174-2188. (in Chinese).

 

Tiwari, R.K., Lal, M.K., Kumar, R., Chourasia, K.N., Naga, K.C., Kumar, D., 2021a. Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol Plantarum, 172: 1212-1226.

 

Tiwari, R.K., Lal, M.K., Kumar, R., Mangal, V., Altaf, M.A., Sharma, S., Singh, B., Kumar, M., 2021b. Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant Mol Biol, 109: 1-15.

 

Tiwari, R.K., Lal, M.K., Naga, K.C., Kumar, R., Chourasia, K.N., Subhash, S., 2020. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci Hortic, 272: 109592.

 

Turk, H., Erdal, S., 2015. Melatonin alleviates cold-induced oxidative damage in maize seedlings by up-regulating mineral elements and enhancing antioxidant activity. J Plant Nutr Soil Sci, 178: 433-439.

 

Turk, H., Erdal, S., Genisel, M., Atici, O., Demir, Y., Yanmis, D., 2014. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold stressed wheat seedlings. Plant Growth Regul, 74: 139-152.

 

Ulhassan, Z., Huang, Q., Gill, R.A., Ali, S., Mwamba, T.M., Ali, B., Hina, F., Zhou, W., 2019. Protective mechanisms of melatonin against selenium toxicity in Brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery. BMC Plant Biol, 19: 1-16.

 

Wang, M., Zhang, S., Ding, F., 2020. Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants, 9: 218.

 

Xia, M., Li, J.W., Luo, Z.R., Zu, G.D., Wang, Y., Zhang, W.P., 2022. Research on mechanism of exogenous melatonin effects on radish growth and resistence to Alternaria brassicae. Acta Hortic Sin, 49: 548-560. (in Chinese).

 

Xiang, M.L., Wu, F., Li, S.H., Ma, Q.L., Wang, Y.B., Xiao, L.H., Chen, J.Y., Chen, M., 2022. Exogenous melatonin regulates reactive oxygen metabolism to induce resistance of postharvest pear fruit to black spot. Acta Hortic Sin, 49: 1102-1110. (in Chinese).

 

Xu, G.X., Li, L.J., Zhou, J., Lyu, D.G., Zhao, D.Y., Qin, S.J., 2023. Comparison of transcriptome and metabolome analysis revealed differences in cold resistant metabolic pathways in different apple cultivars under low temperature stress. Hortic Plant J, 9: 183-198.

 

Yadav, S.K., 2010. Cold stress tolerance mechanisms in plants. a review. Agron Sustain Dev, 30: 515-527.

 

Yamori, W., Hikosaka, K., Way, D.A., 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res, 119: 101-117.

 

Yang, X.L., Xu, H., Li, D., Gao, X., Li, T.L., Wang, R., 2018. Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica, 56: 884–892.

 

Zhang, H.J., Zhang, R., Sun, Y., Liu, Z., Jin, W., Sun, Y., 2017. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J Pineal Res, 62: e12403.

 

Zhang, N., Zhao, B., Zhang, H.J., Weeda, S., Yang, C., Yang, Z.C., Ren, S., Guo, Y.D., 2013. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res, 54: 15-23.

 

Zhou, Y.H., Wang, X.P., Qi, K.J., Bao, J.P., Zhang, S.L., Gu, C., 2023. Involvement of long non-coding RNAs in pear fruit senescence under high- and low-temperature conditions. Hortic Plant J, 9: 224-236.

 

Zou X.X., Zhu, F., 2022. Origin, evolution and cultivation history of the pepper. Acta Hortic Sin, 49: 1371-1381. (in Chinese).

 

Zubair, M., Hanif, A., Farzand, A., Sheikh, T.M.M., Khan, A.R., Suleman, M., Ayaz, M., Gao, X., 2019. Genetic screening and expression analysis of psychrophilic Bacillus spp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat. Microorganisms, 7: 337.

Horticultural Plant Journal
Pages 532-544
Cite this article:
Altaf MA, Hao Y, Shu H, et al. Melatonin mitigates cold-induced damage to pepper seedlings by promoting redox homeostasis and regulating antioxidant profiling. Horticultural Plant Journal, 2024, 10(2): 532-544. https://doi.org/10.1016/j.hpj.2023.02.006

161

Views

6

Downloads

6

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 15 July 2022
Revised: 28 October 2022
Accepted: 14 December 2022
Published: 18 February 2023
© 2023 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return