AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fast, simple, efficient Agrobacterium rhizogenes-mediated transformation system to non-heading Chinese cabbage with transgenic roots

Huiyu WangaYushan ZhengaQian ZhouaYing Lia,bTongkun Liua( )Xilin Houa,b( )
State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Non-heading Chinese cabbage, a variety of Brassica campestris, is an important vegetable crop in the Yangtze River Basin of China. However, the immaturity of its stable transformation system and its low transformation efficiency limit gene function research on non-heading Chinese cabbage. Agrobacterium rhizogenes-mediated (ARM) transgenic technology is a rapid and effective transformation method that has not yet been established for non-heading Chinese cabbage plants. Here, we optimized conventional ARM approaches (one-step and two-step transformation methods) suitable for living non-heading Chinese cabbage plants in nonsterile environments. Transgenic roots in composite non-heading Chinese cabbage plants were identified using phenotypic detection, fluorescence observation, and PCR analysis. The transformation efficiency of a two-step method on four five-day-old non-heading Chinese cabbage seedlings (Suzhouqing, Huangmeigui, Wuyueman, and Sijiu Caixin) was 43.33%–51.09%, whereas using the stout hypocotyl resulted in a transformation efficiency of 54.88% for the 30-day-old Sijiu Caixin. The one-step method outperformed the two-step method; the transformation efficiency of different varieties was above 60%, and both methods can be used to obtain transgenic roots for functional studies within one month. Finally, optimized ARM transformation methods can easily, quickly, and effectively produce composite non-heading Chinese cabbage plants with transgenic roots, providing a reliable foundation for gene function research and non-heading Chinese cabbage genetic improvement breeding.

References

 

Alahakoon, A.Y., Tongson, E., Meng, W., Ye, Z.W., Russell, D.A., Chye, M.L., Golz, J.F., Taylor, P.W.J., 2022. Overexpressing Arabidopsis thaliana ACBP6 in transgenic rapid-cycling Brassica napus confers cold tolerance. Plant Methods, 18: 62.

 

Bhalla, P.L., Singh, M.B., 2008. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc, 3: 181-189.

 

Boisson-Dernier, A., Chabaud, M., Garcia, F., Becard, G., Rosenberg, C., Barker, D.G., 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact, 14: 695-700.

 

Cao, X.S., Xie, H.T., Song, M.L., Lu, J.H., Ma, P., Huang, B.Y., Wang, M.G., Tian, Y.F., Chen, F., Peng, J., Lang, Z.B., Li, G.F., Zhu J.K., 2023. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. The Innovation, 4: 100345.

 

Chattopadhyay, T., Roy, S., Mitra, A., Maiti, M.K., 2011. Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Plant Cell Rep, 30: 485-493.

 

Christey, M.C., Sinclair, B.K., Braun, R.H., Wyke, L., 1997. Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Rep, 16: 587-593.

 

De Block, M., De Brouwer, D., Tenning, P., 1989. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiology, 91: 694-701.

 

Dr, P., Mathur, A., Shanker, K., 2012. Growth, alkaloid production, rol genes integration, bioreactor up-scaling and plant regeneration studies in hairy root lines of Catharanthus roseus. Plant Biosystems, 146: 27-40.

 

Dutt, M., Grosser, J.W., 2010. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus. Plant Cell Rep, 29: 1251-1260.

 

Fan, Y., Xu, F., Zhou, H., Liu, X., Yang, X., Weng, K., Sun, X., Lyu, S., 2020a. A fast, simple, high efficient and one-step generation of composite cucumber plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. Plant Cell Tissue Organ Cult, 141: 207-216.

 

Fan, Y., Zhang, X., Zhong, L., Wang, X., Jin, L., Lyu, S., 2020b. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC Plant Biology, 20: 208.

 

Frame, B.R., Shou, H., Chikwamba, R.K., Zhang, Z., Xiang, C., Fonger, T.M., Pegg, S.E., Li, B., Nettleton, D.S., Pei, D., Wang, K., 2002. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology, 129: 13-22.

 

Hansen, J., Jørgensen, J.E., Stougaard, J., Marcker, K.A., 1989. Hairy roots - a short cut to transgenic root nodules. Plant Cell Rep, 8: 12-15.

 

Horn, P., Santala, J., Nielsen, S.L., Huhns, M., Broer, I., Valkonen, J.P., 2014. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots. Plant Cell Rep, 33: 1977-1992.

 

Hou, X.L., Li, Y., Huang, F.Y., 2020. New advances in molecular biology of main characters and breeding technology in non heading Chinese cabbage (Brassica campestris ssp. chinensis). Acta Hortic Sin, 47: 1663-1677. (in Chinese)

 

Kado, C.I., 2014. Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbiol, 5: 340.

 

Kereszt, A., Li, D., Indrasumunar, A., Nguyen, C.D., Nontachaiyapoom, S., Kinkema, M., Gresshoff, P.M., 2007. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc, 2: 948-952.

 

Khan, R., Thirukkumaran, G., Nakamura, I., Mii, M., 2010. Rol (root loci) gene as a positive selection marker to produce marker-free Petunia hybrida. Plant Cell Tissue Organ Cult, 101: 279-285.

 

Kim, B.K., Cho, H.J., Park, Y.S., Harn, C.H., Yang, S.G., Min, B.W., 2001. Agrobacterium-mediated transformation of Chinese Cabbage (Brassica campestris L. ssp. pekinensis) with a protein disulfide isomerase gene. J Korean Math Soc, 44: 5-9.

 

Leppyanen, I.V., Kirienko, A.N., Dolgikh, E.A., 2019. Agrobacterium rhizogenes-mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses. Peer J, 7: e6552.

 

Li, Chen, T., Wang, W., Liu, H., Yan, X., Wu-Zhang, K., Qin, W., Xie, L., Zhang, Y., Peng, B., Yao, X., Wang, C., Kayani, S.I., Fu, X., Li, L., Tang, K., 2021a. A high-efficiency Agrobacterium-mediated transient expression system in the leaves of Artemisia annua L. Plant Methods, 17: 106.

 

Li, X., Li, H., Zhao, Y., Zong, P., Zhan, Z., Piao, Z., 2021b. Establishment of a simple and efficient Agrobacterium-mediated genetic transformation system to Chinese cabbage (Brassica rapa L. ssp. pekinensis). Hortic Plant J, 7: 117-128.

 

Li, Y., Liu, G.F., Ma, L.M., Liu, T.K., Zhang, C.W., Xiao, D., Zheng, H.K., Chen, F., Hou, X.L., 2020. A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Hortic Res, 7: 212.

 

Majumder, S., Datta, K., Datta, S.K., 2021. Agrobacterium tumefaciens-mediated transformation of rice by Hygromycin Phosphotransferase (hptII) gene containing CRISPR/Cas9 vector. Methods Mol Biol, 2238: 69-79.

 

Manikandan, R., Balakrishnan, N., Sudhakar, D., Udayasuriyan, V., 2016. Development of leaffolder resistant transgenic rice expressing cry2AX1 gene driven by green tissue-specific rbcS promoter. World J Microbiol Biotechnol, 32: 37.

 

Mi, Y., Zhu, Z., Qian, G., Li, Y., Meng, X., Xue, J., Chen, Q., Sun, W., Shi, Y., 2020. Inducing hairy roots by Agrobacterium rhizogenes-mediated transformation in Tartary buckwheat (Fagopyrum tataricum). JoVE Journal: e60828.

 

Min, B.W., Cho, Y.N., Song, M.J., Noh, T.K., Kim, B.K., Chae, W.K., Park, Y.S., Choi, Y.D., Harn, C.H., 2007. Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Plant Cell Rep, 26: 337-344.

 

Nuccio, M.L., Wu, J., Mowers, R., Zhou, H.-P., Meghji, M., Primavesi, L.F., Paul, M.J., Chen, X., Gao, Y., Haque, E., Basu, S.S., Lagrimini, L.M., 2015. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol, 33: 862-869.

 

Plasencia, A., Soler, M., Dupas, A., Ladouce, N., Silva-Martins, G., Martinez, Y., Lapierre, C., Franche, C., Truchet, I., Grima-Pettenati, J., 2016. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnol J, 14: 1381-1393.

 

Qin, Y., Wang, D., Fu, J., Zhang, Z., Qin, Y., Hu, G., Zhao, J., 2021. Agrobacterium rhizogenes-mediated hairy root transformation as an efficient system for gene function analysis in Litchi chinensis. Plant Methods, 17: 103.

 

Raman, V., Rojas, C.M., Vasudevan, B., Dunning, K., Kolape, J., Oh, S., Yun, J., Yang, L., Li, G., Pant, B.D., Jiang, Q., Mysore, K.S., 2022. Agrobacterium expressing a type III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nat Commun, 13: 2581.

 

Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M.A., Zumstein, K., Garcha, J., Winte, S., Masson, H., Inagaki, S., Federici, F., Sinha, N., Deal, R.B., Bailey-Serres, J., Brady, S.M., 2014. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology, 166: 455-469.

 

Singh, R.K., Prasad, M., 2016. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma, 253: 691-707.

 

Sun, W., Gao, Z., Wang, J., Huang, Y., Chen, Y., Li, J., Lv, M., Wang, J., Luo, M., Zuo, K., 2019. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers. New Phytologist, 222: 864-881.

 

Tang, L., Xiao, D., Yin, Y., Wang, H., Wang, J., Liu, T., Hou, X., Li, Y., 2022. Comparative transcriptome analysis of purple and green non-heading Chinese cabbage and function analyses of BcTT8 gene. Genes (Basel), 13: 988.

 

Taylor, C.G., Fuchs, B., Collier, R., Lutke, W.K., 2006. Generation of composite plants using Agrobacterium rhizogenes. Methods Mol Biol, 343: 155-167.

 

Trulson, A.J., Simpson, R.B., Shahin, E.A., 1986. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor Appl Genet, 73: 11-15.

 

Wang, G., Xu, X., Gao, Z., Liu, T., Li, Y., Hou, X., 2022a. Genome-wide identification of LEA gene family and cold response mechanism of BcLEA4-7 and BcLEA4-18 in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Plant Science, 321: 111291.

 

Wang, S.J., Wang, G., Li, H.L., Li, F., Wang, J.B., 2023. Agrobacterium tumefaciens-mediated transformation of embryogenic callus and CRISPR/Cas9-mediated genome editing in ‘Feizixiao’ litchi. Hortic Plant J, 9: 947-957.

 

Wang, G., Xu, Y., 2008. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep, 27: 1177-1184.

 

Wang, H., Li, Z., Ren, H., Zhang, C., Xiao, D., Li, Y., Hou, X., Liu, T., 2022b. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Hortic Res, 9: uhac113.

 

Wang, H., Zheng, Y., Xiao, D., Li, Y., Liu, T., Hou, X., 2022c. BcWRKY33A enhances resistance to Botrytis cinerea via activating BcMYB51-3 in non-heading Chinese cabbage. Int J Mol Sci, 23: 8222.

 

Xu, L.L., Zhao, T.Z., Zhang, W., Zong, C., Huang, F.Y., Wang, J.J., Hou, X.L., Li, Y., 2023. Function analysis of BcMAX2 in regulating axillary bud growth in Brassica campestris ssp. chinensis. Acta Hortic Sin, 50: 972-984. (in Chinese)

 

Yang, W.H., Ren, J.Q., Liu, W.R., Liu, D., Xie, K.D., Zhang, F., Wang, P.W., Guo, W.W., Wu, X.M., 2023. An efficient transient gene expression system for protein subcellular localization assay and genome editing in citrus protoplasts. Hortic Plant J, 9: 425-436.

 

Zhang, Zhang, C., Lyu, S., Fang, Z., Zhu, H., Hou, X., 2022. Functional analysis of BcSNX3 in regulating resistance to Turnip Mosaic Virus (TuMV) by autophagy in Pak-choi (Brassica campestris ssp. chinensis). Agronomy, 12: 1757.

 

Zhang, C., Wang, H., Xu, Y., Zhang, S., Wang, J., Hu, B., Hou, X., Li, Y., Liu, T., 2020. Enhanced relative electron transport rate contributes to increased photosynthetic capacity in autotetraploid Pak Choi. Plant Cell Physiology, 61: 761-774.

 

Zhang, F.L., Takahata, Y., Watanabe, M., Xu, J.B., 2000. Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep, 19: 569-575.

 

Zhang, F.L., Takahata, Y., Xu, J.B., 1998. Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep, 17: 780-786.

Horticultural Plant Journal
Pages 450-460
Cite this article:
Wang H, Zheng Y, Zhou Q, et al. Fast, simple, efficient Agrobacterium rhizogenes-mediated transformation system to non-heading Chinese cabbage with transgenic roots. Horticultural Plant Journal, 2024, 10(2): 450-460. https://doi.org/10.1016/j.hpj.2023.03.018

120

Views

6

Downloads

4

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 16 March 2023
Revised: 17 May 2023
Accepted: 20 July 2023
Published: 26 September 2023
© 2024 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return