AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Chromosome-scale genome assembly of marigold (Tagetes erecta L.): An ornamental plant and feedstock for industrial lutein production

Haibo Xina,1Fangfang Jib,1Jie Wub,1Shiya ZhangbCaijie YiaShiwei ZhaoaRichen CongaLiangjun ZhaobHua Zhanga( )Zhao Zhangb( )
Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China
Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China

1 These authors contributed equally to this work.

Peer review under responsibility of Chinese Society of Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Marigold (Tagetes erecta L., African marigold) is a widely grown ornamental plant and a main source of the carotenoid lutein for the industrial production of pharmaceuticals, food coloring, and feed additives. To gain a deeper understanding of the genetic mechanism of lutein in marigold, a chromosome-scale assembly of the marigold (T. erecta V-01) genome was completed based on Illumina, PacBio, and Hi-C reads. The 707.21-Mb assembled genome consisted of 35 834 annotated protein-coding genes, with 97.7% genomic integrity. We anchored 87.8% of the contigs (covering 621.20 Mb) to 12 pseudochromosomes, bringing the scaffold N50 length to 54.15 Mb. Phylogenetic analysis showed that marigold was closely related to the Asteraceae species bitter vine (Mikania micrantha) and sunflower (Helianthus annuus), all three of which originated in the Americas. Marigold diverged from the sunflower clade 23.57 million years ago (MYA) and from M. micrantha 19.59 MYA. Marigold has undergone three whole-genome duplication events, as well as a recent whole-genome duplication event (WGD-2) common to H. annuus and M. micrantha. Marigold gene families were significantly less expanded than those of M. micrantha or H. annuus, and the marigold genome contained significantly fewer interspersed repeats, which might account for its smaller genome. In addition, a range of candidate genes involved in the lutein biosynthetic pathway were identified. The high-quality reference genome obtained in this study provided a valuable genomic resource for studying the evolution of the Asteraceae family and for improving marigold breeding strategies.

References

 

Auldridge, M.E., Block, A., Vogel, J.T., Dabney-Smith, C., Mila, I., Bouzayen, M., Magallanes-Lundback, M., DellaPenna, D., McCarty, D.R., Klee, H.J., 2006. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J, 45: 982-993.

 

Badouin, H., Gouzy, J., Grassa, C.J., Murat, F., Staton, S.E., Cottret, L., Lelandais-Briere, C., Owens, G.L., Carrere, S., Mayjonade, B., Legrand, L., Gill, N., Kane, N.C., Bowers, J.E., Hubner, S., Bellec, A., Berard, A., Berges, H., Blanchet, N., Boniface, M.C., Brunel, D., Catrice, O., Chaidir, N., Claudel, C., Donnadieu, C., Faraut, T., Fievet, G., Helmstetter, N., King, M., Knapp, S.J., Lai, Z., Le Paslier, M.C., Lippi, Y., Lorenzon, L., Mandel, J.R., Marage, G., Marchand, G., Marquand, E., Bret-Mestries, E., Morien, E., Nambeesan, S., Nguyen, T., Pegot-Espagnet, P., Pouilly, N., Raftis, F., Sallet, E., Schiex, T., Thomas, J., Vandecasteele, C., Vares, D., Vear, F., Vautrin, S., Crespi, M., Mangin, B., Burke, J.M., Salse, J., Munos, S., Vincourt, P., Rieseberg, L.H., Langlade, N.B., 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 546: 148-152.

 

Bao, W., Kojima, K.K., Kohany, O., 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6: 11.

 

Berman, J., Zorrilla-Lopez, U., Farre, G., Zhu, C., Sandmann, G., Twyman, R.M., Capell, T., Christou, P., 2015. Nutritionally important carotenoids as consumer products. Phytochemistry Rev, 14: 727-743.

 

Bhattacharyya, S., Datta, S., Mallick, B., Dhar, P., Ghosh, S., 2010. Lutein content and in vitro antioxidant activity of different cultivars of Indian marigold flower (Tagetes patula L.) extracts. J Agric Food Chem, 58: 8259-8264.

 

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30: 2114-2120.

 

Bouvier, F., Isner, J.C., Dogbo, O., Camara, B., 2005. Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci, 10: 187-194.

 

Campbell, M.S., Law, M., Holt, C., Stein, J.C., Moghe, G.D., Hufnagel, D.E., Lei, J., Achawanantakun, R., Jiao, D., Lawrence, C.J., Ware, D., Shiu, S.-H., Childs, K.L., Sun, Y., Jiang, N., Yandell, M., 2014. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol, 164: 513-524.

 

Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13: 1194-1202.

 

Cheng, X., Chen, D.L., Luo, C., Liu, H., Huang, C.L., 2023. Comparative transcriptome analysis of Ts (Resistant genotype) and Ma (Susceptible genotype) marigold (Tagetes erecta L.) leaves in response to Alternaria tagetica. Hortic Plant J, 9: 321-334.

 

Chitrakar, B., Zhang, M., Bhandari, B., 2019. Edible flowers with the common name “marigold”: their therapeutic values and processing. Trends Food Sci Technol, 89: 76-87.

 

Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M., 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21: 3674-3676.

 

Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27: 1164-1165.

 

Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., Aiden, E.L., 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356: 92-95.

 

Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., Aiden, E.L., 2016a. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst, 3: 99-101.

 

Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S.P., Huntley, M.H., Lander, E.S., Aiden, E.L., 2016b. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst, 3: 95-98.

 

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32: 1792-1797.

 

Emms, D.M., Kelly, S., 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol, 20: 238.

 

Feng, G., Huang, S., Liu, Y., Xiao, F., Liu, J., Zhang, Z., Chen, Q., Mao, Y., Cao, X., Wang, Y., Chen, D., Zhou, Y., Yu, F., Liu, G., Liu, Y., Niu, X., 2018. The transcriptome analyses of Tagetes erecta provides novel insights into secondary metabolite biosynthesis during flower development. Gene, 660: 18-27.

 

Fu, A., Wang, Q., Mu, J., Ma, L., Wen, C., Zhao, X., Gao, L., Li, J., Shi, K., Wang, Y., Zhang, X., Zhang, X., Wang, F., Grierson, D., Zuo, J., 2021. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. Hortic Res, 8: 35.

 

Gates, M., Agency, U.S., Miiro, G., Serwanga, J., Pozniak, A., Mcphee, D., Jaoko, W., Dehovitz, J., Bekker, L.G., Pitisuttithum, P., 2009. Comprehensive mapping of long-range interactions reveals folding principles. Science, 326: 289-293.

 

Han, M.V., Thomas, G.W.C., Lugo-Martinez, J., Hahn, M.W., 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol, 30: 1987-1997.

 

Hoshi, Y., Praphruet, R., Hironaka, K., 2019. Genome size determination and chromosome characterization of two marigold species (Asteraceae). Cytologia, 84: 37-42.

 

Jiang, F., Zhang, J., Wang, S., Yang, L., Luo, Y., Gao, S., Zhang, M., Wu, S., Hu, S., Sun, H., Wang, Y., 2019. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic Res, 6: 128.

 

Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28: 27-30.

 

Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12: 357-360.

 

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M., 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res, 27: 722-736.

 

Kovaka, S., Zimin, A.V., Pertea, G.M., Razaghi, R., Salzberg, S.L., Pertea, M., 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol, 20: 278.

 

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods, 9: 357-359.

 

Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25: 1754-1760.

 

Li, J., Wang, Y., Dong, Y., Zhang, W., Wang, D., Bai, H., Li, K., Li, H., Shi, L., 2021. The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Hortic Res, 8: 53.

 

Li, M., Zhang, D., Gao, Q., Luo, Y., Zhang, H., Ma, B., Chen, C., Whibley, A., Zhang, Y., Cao, Y., Li, Q., Guo, H., Li, J., Song, Y., Zhang, Y., Copsey, L., Li, Y., Li, X., Qi, M., Wang, J., Chen, Y., Wang, D., Zhao, J., Liu, G., Wu, B., Yu, L., Xu, C., Li, J., Zhao, S., Zhang, Y., Hu, S., Liang, C., Yin, Y., Coen, E., Xue, Y., 2019. Genome structure and evolution of Antirrhinum majus L. Native Plants, 5: 174-183.

 

Liu, B., Yan, J., Li, W., Yin, L., Li, P., Yu, H., Xing, L., Cai, M., Wang, H., Zhao, M., Zheng, J., Sun, F., Wang, Z., Jiang, Z., Ou, Q., Li, S., Qu, L., Zhang, Q., Zheng, Y., Qiao, X., Xi, Y., Zhang, Y., Jiang, F., Huang, C., Liu, C., Ren, Y., Wang, S., Liu, H., Guo, J., Wang, H., Dong, H., Peng, C., Qian, W., Fan, W., Wan, F., 2020a. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nat Commun, 11: 340.

 

Liu, J., Shi, C., Shi, C.C., Li, W., Zhang, Q.J., Zhang, Y., Li, K., Lu, H.F., Shi, C., Zhu, S.T., Xiao, Z.Y., Nan, H., Yue, Y., Zhu, X.G., Wu, Y., Hong, X.N., Fan, G.Y., Tong, Y., Zhang, D., Mao, C.L., Liu, Y.L., Hao, S.J., Liu, W.Q., Lv, M.Q., Zhang, H.B., Liu, Y., Hu-Tang, G.R., Wang, J.P., Wang, J.H., Sun, Y.H., Ni, S.B., Chen, W.B., Zhang, X.C., Jiao, Y.N., Eichler, E.E., Li, G.H., Liu, X., Gao, L.Z., 2020b. The chromosome-based rubber tree genome provides new insights into spurge genome evolution and rubber biosynthesis. Mol Plant, 13: 336-350.

 

Marcais, G., Kingsford, C., 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27: 764-770.

 

Mares, J., 2016. Lutein and zeaxanthin isomers in eye health and disease. Annu Rev Nutr, 36: 571-602.

 

Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S.O., Wicker, T., Radchuk, V., Dockter, C., Hedley, P.E., Russell, J., Bayer, M., Ramsay, L., Liu, H., Haberer, G., Zhang, X.Q., Zhang, Q., Barrero, R.A., Li, L., Taudien, S., Groth, M., Felder, M., Hastie, A., Simkova, H., Stankova, H., Vrana, J., Chan, S., Munoz-Amatriain, M., Ounit, R., Wanamaker, S., Bolser, D., Colmsee, C., Schmutzer, T., Aliyeva-Schnorr, L., Grasso, S., Tanskanen, J., Chailyan, A., Sampath, D., Heavens, D., Clissold, L., Cao, S., Chapman, B., Dai, F., Han, Y., Li, H., Li, X., Lin, C., McCooke, J.K., Tan, C., Wang, P., Wang, S., Yin, S., Zhou, G., Poland, J.A., Bellgard, M.I., Borisjuk, L., Houben, A., Dolezel, J., Ayling, S., Lonardi, S., Kersey, P., Langridge, P., Muehlbauer, G.J., Clark, M.D., Caccamo, M., Schulman, A.H., Mayer, K.F.X., Platzer, M., Close, T.J., Scholz, U., Hansson, M., Zhang, G., Braumann, I., Spannagl, M., Li, C., Waugh, R., Stein, N., 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 544: 427-433.

 

Michael, T.P., Jupe, F., Bemm, F., Motley, S.T., Sandoval, J.P., Lanz, C., Loudet, O., Weigel, D., Ecker, J.R., 2018. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun, 9.

 

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D., Bateman, A., 2021. Pfam: the protein families database in 2021. Nucleic Acids Res, 49: 412-419.

 

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res, 35: 182-185.

 

Nuoendagula, Narushima, M., Uesugi, M., Murai, Y., Katayama, Y., Iimura, Y., Kajita, S., 2017. In vitro regeneration and Agrobacterium-mediated transformation of male- sterile marigold (Tagetes erecta L.). Plant Biotechnol, 34: 125-129.

 

Piccaglia, R., Marotti, M., Grandi, S., 1998. Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind Crop Prod, 8: 45-51.

 

Qing, Z., Liu, J., Yi, X., Liu, X., Hu, G., Lao, J., He, W., Yang, Z., Zou, X., Sun, M., Huang, P., Zeng, J., 2021. The chromosome-level Hemerocallis citrina Borani genome provides new insights into the rutin biosynthesis and the lack of colchicine. Hortic Res, 8: 89.

 

Rajput, N., Naeem, M., Ali, S., Zhang, J.F., Zhang, L., Wang, T., 2013. The effect of dietary supplementation with the natural carotenoids curcumin and lutein on broiler pigmentation and immunity. Poultry Sci, 92: 1177-1185.

 

Raymond, O., Gouzy, J., Just, J., Badouin, H., Verdenaud, M., Lemainque, A., Vergne, P., Moja, S., Choisne, N., Pont, C., Carrere, S., Caissard, J.-C., Couloux, A., Cottret, L., Aury, J.-M., Szecsi, J., Latrasse, D., Madoui, M.-A., Francois, L., Fu, X., Yang, S.-H., Dubois, A., Piola, F., Larrieu, A., Perez, M., Labadie, K., Perrier, L., Govetto, B., Labrousse, Y., Villand, P., Bardoux, C., Boltz, V., Lopez-Roques, C., Heitzler, P., Vernoux, T., Vandenbussche, M., Quesneville, H., Boualem, A., Bendahmane, A., Liu, C., Le Bris, M., Salse, J., Baudino, S., Benhamed, M., Wincker, P., Bendahmane, M., 2018. The Rosa genome provides new insights into the domestication of modern roses. Nat Genet, 50: 771-772.

 

Reyes-Chin-Wo, S., Wang, Z., Yang, X., Kozik, A., Arikit, S., Song, C., Xia, L., Froenicke, L., Lavelle, D.O., Truco, M.J., Xia, R., Zhu, S., Xu, C., Xu, H., Xu, X., Cox, K., Korf, I., Meyers, B.C., Michelmore, R.W., 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun, 8: 14953.

 

Scaglione, D., Reyes-Chin-Wo, S., Acquadro, A., Froenicke, L., Portis, E., Beitel, C., Tirone, M., Mauro, R., Lo Monaco, A., Mauromicale, G., Faccioli, P., Cattivelli, L., Rieseberg, L., Michelmore, R., Lanteri, S., 2016. The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny. Sci Rep, 6: 19427.

 

Song, C., Liu, Y., Song, A., Dong, G., Zhao, H., Sun, W., Ramakrishnan, S., Wang, Y., Wang, S., Li, T., Niu, Y., Jiang, J., Dong, B., Xia, Y., Chen, S., Hu, Z., Chen, F., Chen, S., 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Mol Plant, 11: 1482-1491.

 

Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312-1313.

 

Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res, 34: 435-439.

 

Sun, P., Jiao, B., Yang, Y., Shan, L., Liu, J., 2022. WGDI: a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol Plant, 15: 1841-1851.

 

Sun, X., Jiao, C., Schwaninger, H., Chao, C.T., Ma, Y., Duan, N., Khan, A., Ban, S., Xu, K., Cheng, L., Zhong, G.Y., Fei, Z., 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet, 52: 1423-1432.

 

Tan, B.C., Joseph, L.M., Deng, W.T., Liu, L., Li, Q.B., Cline, K., McCarty, D.R., 2003. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J, 35: 44-56.

 

Tang, N., Liu, W., Zhang, W., Tang, D., 2020. Integrative analysis of transcriptomic and proteomic changes related to male sterility in Tagetes erecta. Physiol Mol Biol Plants, 26: 2061-2074.

 

Vallabhaneni, R., Bradbury, L.M.T., Wurtzel, E.T., 2010. The carotenoid dioxygenase gene family in maize, sorghum, and rice. Arch Biochem Biophys, 504: 104-111.

 

Vasudevan, P., Kashyap, S., Sharma, S., 1997. Tagetes: a multipurpose plant. Bioresour Technol, 62: 29-35.

 

Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., Mansueto, L., Copetti, D., Sanciangco, M., Palis, K.C., Xu, J., Sun, C., Fu, B., Zhang, H., Gao, Y., Zhao, X., Shen, F., Cui, X., Yu, H., Li, Z., Chen, M., Detras, J., Zhou, Y., Zhang, X., Zhao, Y., Kudrna, D., Wang, C., Li, R., Jia, B., Lu, J., He, X., Dong, Z., Xu, J., Li, Y., Wang, M., Shi, J., Li, J., Zhang, D., Lee, S., Hu, W., Poliakov, A., Dubchak, I., Ulat, V.J., Borja, F.N., Mendoza, J.R., Ali, J., Li, J., Gao, Q., Niu, Y., Yue, Z., Naredo, M.E.B., Talag, J., Wang, X., Li, J., Fang, X., Yin, Y., Glaszmann, J.C., Zhang, J., Li, J., Hamilton, R.S., Wing, R.A., Ruan, J., Zhang, G., Wei, C., Alexandrov, N., McNally, K.L., Li, Z., Leung, H., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557: 43-49.

 

Wei, Y., Wan, H., Wu, Z., Wang, R., Ruan, M., Ye, Q., Li, Z., Zhou, G., Yao, Z., Yang, Y., 2016. A comprehensive analysis of carotenoid cleavage dioxygenases genes in Solanum Lycopersicum. Plant Mol Biol Rep, 34: 512-523.

 

Wu, C.H., Apweiler, R., Bairoch, A., Natale, D.A., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Mazumder, R., O'Donovan, C., Redaschi, N., Suzek, B., 2006. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res, 34: 187-191.

 

Wu, Z., Liu, H., Zhan, W., Yu, Z., Qin, E., Liu, S., Yang, T., Xiang, N., Kudrna, D., Chen, Y., Lee, S., Li, G., Wing, R.A., Liu, J., Xiong, H., Xia, C., Xing, Y., Zhang, J., Qin, R., 2021. The chromosome-scale reference genome of safflower (Carthamus tinctorius) provides insights into linoleic acid and flavonoid biosynthesis. Plant Biotechnol J, 19: 1725-1742.

 

Xu, W., Wu, D., Yang, T., Sun, C., Wang, Z., Han, B., Wu, S., Yu, A., Chapman, M.A., Muraguri, S., Tan, Q., Wang, W., Bao, Z., Liu, A., Li, D.Z., 2021. Genomic insights into the origin, domestication and genetic basis of agronomic traits of castor bean. Genome Biol, 22: 113.

 

Yang, Z., 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 24: 1586-1591.

 

Zhang, G.Q., Liu, K.W., Li, Z., Lohaus, R., Hsiao, Y.Y., Niu, S.C., Wang, J.Y., Lin, Y.C., Xu, Q., Chen, L.J., Yoshida, K., Fujiwara, S., Wang, Z.W., Zhang, Y.Q., Mitsuda, N., Wang, M., Liu, G.H., Pecoraro, L., Huang, H.X., Xiao, X.J., Lin, M., Wu, X.Y., Wu, W.L., Chen, Y.Y., Chang, S.B., Sakamoto, S., Ohme-Takagi, M., Yagi, M., Zeng, S.J., Shen, C.Y., Yeh, C.M., Luo, Y.B., Tsai, W.C., Van de Peer, Y., Liu, Z.J., 2017. The Apostasia genome and the evolution of orchids. Nature, 549: 379-383.

 

Zhang, H.L., Cong, R.C., Wang, M.L., Dong, A.X., Xin, H.B., Yi, M.F., Guo, H., 2018a. Development of SSR molecular markers based on transcriptome sequencing of Tagetes erecta. Acta Hortic Sin, 45: 159-167. (in Chinese)

 

Zhang, H., Xin, H., Cong, R., Li, Z., Wei, Z., 2019. Cross compatibility analysis to identify suitable parents of Tagetes erecta and T. Patula for heterotic hybrid breeding. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47.

 

Zhang, H., Zhang, S., Zhang, H., Chen, X., Liang, F., Qin, H., Zhang, Y., Cong, R., Xin, H., Zhang, Z., 2020a. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.). Sci Rep, 10.

 

Zhang, L., Chen, F., Zhang, X., Li, Z., Zhao, Y., Lohaus, R., Chang, X., Dong, W., Ho, S.Y.W., Liu, X., Song, A., Chen, J., Guo, W., Wang, Z., Zhuang, Y., Wang, H., Chen, X., Hu, J., Liu, Y., Qin, Y., Wang, K., Dong, S., Liu, Y., Zhang, S., Yu, X., Wu, Q., Wang, L., Yan, X., Jiao, Y., Kong, H., Zhou, X., Yu, C., Chen, Y., Li, F., Wang, J., Chen, W., Chen, X., Jia, Q., Zhang, C., Jiang, Y., Zhang, W., Liu, G., Fu, J., Chen, F., Ma, H., Van de Peer, Y., Tang, H., 2020b. The water lily genome and the early evolution of flowering plants. Nature, 577: 79-84.

 

Zhang, P., Zeng, L., Su, Y.X., Gong, X.W., Wang, X.S., 2011. Karyotype studies on Tagetes erecta L. and Tagetes patula L. Afr J Biotechnol, 10: 16138-16144.

 

Zhang, Q., Liang, Z., Cui, X.A., Ji, C.M., Li, Y., Zhang, P.X., Liu, J.R., Riaz, A., Yao, P., Liu, M., Wang, Y.P., Lu, T.G., Yu, H., Yang, D.L., Zheng, H.K., Gu, X.F., 2018b. N-6-Methyladenine DNA methylation in japonica and indica rice genomes and its association with gene expression, plant development, and stress responses. Mol Plant, 11: 1492-1508.

 

Zhang, T., Ren, X., Zhang, Z., Ming, Y., Yang, Z., Hu, J., Li, S., Wang, Y., Sun, S., Sun, K., Piao, F., Sun, Z., 2020c. Long-read sequencing and de novo assembly of the Luffa cylindrica (L.) Roem. genome. Mol Ecol Resour, 20: 511-519.

Horticultural Plant Journal
Pages 1119-1130
Cite this article:
Xin H, Ji F, Wu J, et al. Chromosome-scale genome assembly of marigold (Tagetes erecta L.): An ornamental plant and feedstock for industrial lutein production. Horticultural Plant Journal, 2023, 9(6): 1119-1130. https://doi.org/10.1016/j.hpj.2023.04.001

338

Views

14

Downloads

8

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 15 September 2022
Revised: 07 December 2022
Accepted: 02 March 2023
Published: 05 April 2023
© 2023 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return