AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iLIVER Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Artificial intelligence-based pathological analysis of liver cancer: Current advancements and interpretative strategies

Guang-Yu Dinga,b,1Jie-Yi Shia,b,1Xiao-Dong Wangc,1Bo YandXi-Yang LiucQiang Gaoa,b,e,f( )
Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Shanghai 200032, China
Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
School of Computer Science and Technology, Xidian University, Xi'an 710126, China
School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
Institute of Biomedical Sciences, Fudan University, Shanghai 200030, China
State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

In recent years, significant advances have been achieved in liver cancer management with the development of artificial intelligence (AI). AI-based pathological analysis can extract crucial information from whole slide images to assist clinicians in all aspects from diagnosis to prognosis and molecular profiling. However, AI techniques have a “black box” nature, which means that interpretability is of utmost importance because it is key to ensuring the reliability of the methods and building trust among clinicians for actual clinical implementation. In this paper, we provide an overview of current technical advancements in the AI-based pathological analysis of liver cancer, and delve into the strategies used in recent studies to unravel the “black box” of AI's decision-making process.

References

[1]

Abels E, Pantanowitz L, Aeffner F, et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. J Pathol 2019;249(3):286–94. https://doi.org/10.1002/path.5331.

[2]

Lee Y, Park JH, Oh S, et al. Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning. Nat Biomed Eng 2022. https://doi.org/10.1038/s41551-022-00923-0.

[3]

Wulczyn E, Steiner DF, Xu Z, et al. Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS One 2020;15(6): e0233678. https://doi.org/10.1371/journal.pone.0233678.

[4]

Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology – new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 2019;16(11): 703–15. https://doi.org/10.1038/s41571-019-0252-y.

[5]

Ahn JC, Connell A, Simonetto DA, et al. Application of artificial intelligence for the diagnosis and treatment of liver diseases. Hepatology 2021;73(6):2546–63. https://doi.org/10.1002/hep.31603.

[6]

Madabhushi A, Lee G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal 2016;33:170–5. https://doi.org/10.1016/j.media.2016.06.037.

[7]

van der Velden BHM, Kuijf HJ, Gilhuijs KGA, et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal 2022;79: 102470. https://doi.org/10.1016/j.media.2022.102470.

[8]

Nam D, Chapiro J, Paradis V, et al. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP Rep 2022;4(4):100443. https://doi.org/10.1016/j.jhepr.2022.100443.

[9]

Kleppe A, Skrede OJ, De Raedt S, et al. Designing deep learning studies in cancer diagnostics. Nat Rev Cancer 2021;21(3):199–211. https://doi.org/10.1038/s41568-020-00327-9.

[10]

Lu MY, Chen TY, Williamson DFK, et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 2021;594(7861):106–10. https://doi.org/10.1038/s41586-021-03512-4.

[11]

Bejnordi BE, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318(22):2199–210. https://doi.org/10.1001/jama.2017.14585.

[12]

Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 2019;25(8):1301–9. https://doi.org/10.1038/s41591-019-0508-1.

[13]

Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer. NPJ Digit Med 2020;3:23. https://doi.org/10.1038/s41746-020-0232-8.

[14]

Kriegsmann M, Kriegsmann K, Steinbuss G, et al. Implementation of deep learning in liver pathology optimizes diagnosis of benign lesions and adenocarcinoma metastasis. Clin Transl Med 2023;13(7):e1299. https://doi.org/10.1002/ctm2.1299.

[15]

Aatresh AA, Alabhya K, Lal S, et al. LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images. Int J Comput Assist Radiol Surg 2021;16(9):1549–63. https://doi.org/10.1007/s11548-021-02410-4.

[16]

Liao H, Xiong T, Peng J, et al. Classification and prognosis prediction from histopathological images of hepatocellular carcinoma by a fully automated pipeline based on machine learning. Ann Surg Oncol 2020;27(7):2359–69. https://doi.org/10.1245/s10434-019-08190-1.

[17]

Sun C, Xu A, Liu D, et al. Deep learning-based classification of liver cancer histopathology images using only global labels. IEEE J Biomed Health Inform 2020; 24(6):1643–51. https://doi.org/10.1109/JBHI.2019.2949837.

[18]

Wang X, Fang Y, Yang S, et al. A hybrid network for automatic hepatocellular carcinoma segmentation in H&E-stained whole slide images. Med Image Anal 2021;68:101914. https://doi.org/10.1016/j.media.2020.101914.

[19]

Roy M, Kong J, Kashyap S, et al. Convolutional autoencoder based model HistoCAE for segmentation of viable tumor regions in liver whole-slide images. Sci Rep 2021; 11(1):139. https://doi.org/10.1038/s41598-020-80610-9.

[20]

Shi JY, Wang X, Ding GY, et al. Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning. Gut 2021;70(5): 951–61. https://doi.org/10.1136/gutjnl-2020-320930.

[21]

Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology 2020; 72(6):2000–13. https://doi.org/10.1002/hep.31207.

[22]

Saito A, Toyoda H, Kobayashi M, et al. Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning. Mod Pathol 2021;34(2):417–25. https://doi.org/10.1038/s41379-020-00671-z.

[23]

Qu WF, Tian MX, Lu HW, et al. Development of a deep pathomics score for predicting hepatocellular carcinoma recurrence after liver transplantation. Hepatol Int 2023;17(4):927–41. https://doi.org/10.1007/s12072-023-10511-2.

[24]

Yamashita R, Long J, Saleem A, et al. Deep learning predicts postsurgical recurrence of hepatocellular carcinoma from digital histopathologic images. Sci Rep 2021; 11(1):2047. https://doi.org/10.1038/s41598-021-81506-y.

[25]

Qu WF, Tian MX, Qiu JT, et al. Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deep learning. Front Oncol 2022;12:968202. https://doi.org/10.3389/fonc.2022.968202.

[26]

Li S, Jiang H, Pang W. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading. Comput Biol Med 2017;84:156–67. https://doi.org/10.1016/j.compbiomed.2017.03.017.

[27]

Lal S, Das D, Alabhya K, et al. NucleiSegNet: robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images. Comput Biol Med 2021;128:104075. https://doi.org/10.1016/j.compbiomed.2020.104075.

[28]

Chen Q, Xiao H, Gu Y, et al. Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images. Hepatol Int 2022;16(3):590–602. https://doi.org/10.1007/s12072-022-10323-w.

[29]

Chen M, Zhang B, Topatana W, et al. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. npj Precis Oncol 2020;4:14. https://doi.org/10.1038/s41698-020-0120-3.

[30]

CoudrayN, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018;24(10):1559–67. https://doi.org/10.1038/s41591-018-0177-5.

[31]

Kather JN, Heij LR, Grabsch HI, et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer 2020;1(8):789–99. https://doi.org/10.1038/s43018-020-0087-6.

[32]

Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci USA 2018;115(13):E2970–9. https://doi.org/10.1073/pnas.1717139115.

[33]

Schmauch B, Romagnoni A, Pronier E, et al. A deep learning model to predict RNASeq expression of tumours from whole slide images. Nat Commun 2020;11(1):3877. https://doi.org/10.1038/s41467-020-17678-4.

[34]

He B, Bergenstråhle L, Stenbeck L, et al. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng 2020;4(8):827–34. https://doi.org/10.1038/s41551-020-0578-x.

[35]

Fu Y, Jung AW, Torne RV, et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat Cancer 2020;1(8):800–10. https://doi.org/10.1038/s43018-020-0085-8.

[36]

Liao H, Long Y, Han R, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma. Clin Transl Med 2020;10(2):e102. https://doi.org/10.1002/ctm2.102.

[37]

Vitale I, Shema E, Loi S, et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med 2021;27(2):212–24. https://doi.org/10.1038/s41591-021-01233-9.

[38]

Yang J, Ju J, Guo L, et al. Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Comput Struct Biotechnol J 2021;20:333–42. https://doi.org/10.1016/j.csbj.2021.12.028.

[39]

Foersch S, Glasner C, Woerl AC, et al. Multistain deep learning for prediction of prognosis and therapy response in colorectal cancer. Nat Med 2023;29(2):430–9. https://doi.org/10.1038/s41591-022-02134-1.

[40]

Shamai G, Livne A, Polónia A, et al. Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer. Nat Commun 2022;13(1):6753. https://doi.org/10.1038/s41467-022-34275-9.

[41]

Naik N, Madani A, Esteva A, et al. Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains. Nat Commun 2020;11(1):5727. https://doi.org/10.1038/s41467-020-19334-3.

[42]

Harder N, Schonmeyer R, Nekolla K, et al. Automatic discovery of image-based € signatures for ipilimumab response prediction in malignant melanoma. Sci Rep 2019;9(1):7449. https://doi.org/10.1038/s41598-019-43525-8.

[43]

Kather JN, Pearson AT, Halama N, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med 2019;25(7): 1054–6. https://doi.org/10.1038/s41591-019-0462-y.

[44]

Echle A, Grabsch HI, Quirke P, et al. Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning. Gastroenterology 2020;159(4): 1406–1416.e11. https://doi.org/10.1053/j.gastro.2020.06.021.

[45]

Farahmand S, Fernandez AI, Ahmed FS, et al. Deep learning trained on hematoxylin and eosin tumor region of Interest predicts HER2 status and trastuzumab treatment response in HER2þ breast cancer. Mod Pathol 2022;35(1):44–51. https://doi.org/10.1038/s41379-021-00911-w.

[46]

Bychkov D, Linder N, Tiulpin A, et al. Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy. Sci Rep 2021;11(1):4037. https://doi.org/10.1038/s41598- 021-83102-6.

[47]

Sangro B, Sarobe P, Hervás-Stubbs S, et al. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021;18(8):525–43. https://doi.org/10.1038/s41575-021-00438-0.

[48]

Haber PK, Castet F, Torres-Martin M, et al. Molecular markers of response to antiPD1 therapy in advanced hepatocellular carcinoma. Gastroenterology 2023;164(1): 72–88.e18. https://doi.org/10.1053/j.gastro.2022.09.005.

[49]

Shi Y, Wang J, Huang G, et al. A novel epithelial-mesenchymal transition gene signature for the immune status and prognosis of hepatocellular carcinoma. Hepatol Int 2022;16(4):906–17. https://doi.org/10.1007/s12072-022-10354-3.

[50]

Zhu AX, Abbas AR, de Galarreta MR, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat Med 2022;28(8):1599–611. https://doi.org/10.1038/s41591-022-01868-2.

[51]

Zeng Q, Klein C, Caruso S, et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol 2023; 24(12):1411–22. https://doi.org/10.1016/S1470-2045(23)00468-0.

[52]

van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat Med 2021;27(5):775–84. https://doi.org/10.1038/s41591-021-01343- 4.

[53]

Zhang A, Xing L, Zou J, et al. Shifting machine learning for healthcare from development to deployment and from models to data. Nat Biomed Eng 2022;6(12): 1330–45. https://doi.org/10.1038/s41551-022-00898-y.

[54]

Pesecan CM, Stoicu-Tivadar L. Increasing trust in AI using explainable artificial intelligence for histopathology – an overview. Stud Health Technol Inform 2023;305:14–7. https://doi.org/10.3233/SHTI230411.

[55]

Patel AU, Mohanty SK, Parwani AV. Applications of digital and computational pathology and artificial intelligence in genitourinary pathology diagnostics. Surg Pathol Clin 2022;15(4):759–85. https://doi.org/10.1016/j.path.2022.08.001.

[56]

Klauschen F, Dippel J, Keyl P, et al. Toward explainable artificial intelligence for precision pathology. Annu Rev Pathol 2024;19:541–70. https://doi.org/10.1146/annurev-pathmechdis-051222-113147.

[57]

Geessink OGF, Baidoshvili A, Klaase JM, et al. Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer. Cell Oncol 2019;42(3):331–41. https://doi.org/10.1007/s13402-019-00429-z.

[58]

Diao JA, Wang JK, Chui WF, et al. Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes. Nat Commun 2021;12(1):1613. https://doi.org/10.1038/s41467-021-21896-9.

[59]

Wang X, Janowczyk A, Zhou Y, et al. Prediction of recurrence in early stage nonsmall cell lung cancer using computer extracted nuclear features from digital H&E images. Sci Rep 2017;7(1):13543. https://doi.org/10.1038/s41598-017-13773-7.

[60]

Lu L, Daigle Jr BJ. Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma. PeerJ 2020;8:e8668. https://doi.org/10.7717/peerj.8668.

[61]

Wang H, Jiang Y, Li B, et al. Single-cell spatial analysis of tumor and immune microenvironment on whole-slide image reveals hepatocellular carcinoma subtypes. Cancers (Basel) 2020;12(12):3562. https://doi.org/10.3390/cancers12123562.

[62]

de Vos BD, Wolterink JM, Leiner T, et al. Direct automatic coronary calcium scoring in cardiac and chest CT. IEEE Trans Med Imag 2019;38(9):2127–38. https://doi.org/10.1109/TMI.2019.2899534.

[63]

Liu Z, Liu Y, Zhang W, et al. Deep learning for prediction of hepatocellular carcinoma recurrence after resection or liver transplantation: a discovery and validation study. Hepatol Int 2022;16(3):577–89. https://doi.org/10.1007/s12072- 022-10321-y.

[64]

Liao W, Zou B, Zhao R, et al. Clinical interpretable deep learning model for glaucoma diagnosis. IEEE J Biomed Health Inform 2020;24(5):1405–12. https://doi.org/10.1109/JBHI.2019.2949075.

[65]

Lee H, Yune S, Mansouri M, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019;3(3):173–82. https://doi.org/10.1038/s41551-018-0324-9.

[66]

Kowsari K, Sali R, Ehsan L, et al. HMIC: hierarchical medical image classification, A deep learning approach. Information 2020;11(6):318. https://doi.org/10.3390/info11060318.

[67]

Zhang H, Ogasawara K. Grad-CAM-based explainable artificial intelligence related to medical text processing. Bioengineering 2023;10(9):1070. https://doi.org/10.3390/bioengineering10091070.

[68]

Windisch P, Weber P, Fürweger C, et al. Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices. Neuroradiology 2020;62(11):1515–8. https://doi.org/10.1007/s00234-020- 02465-1.

[69]

Chen C, Chen C, Ma M, et al. Classification of multi-differentiated liver cancer pathological images based on deep learning attention mechanism. BMC Med Inform Decis Mak 2022;22(1):176. https://doi.org/10.1186/s12911-022-01919-1.

[70]

Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 2019;53:197–207. https://doi.org/10.1016/j.media.2019.01.012.

[71]

Jin W, Li X, Fatehi M, et al. Generating post-hoc explanation from deep neural networks for multi-modal medical image analysis tasks. MethodsX 2023;10: 102009. https://doi.org/10.1016/j.mex.2023.102009.

[72]

Li MD, Chang K, Bearce B, et al. Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. NPJ Digit Med 2020; 3:48. https://doi.org/10.1038/s41746-020-0255-1.

[73]

Zhang Z, Beck MW, Winkler DA, et al. Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Ann Transl Med 2018;6(11):216. https://doi.org/10.21037/atm.2018.05.32.

[74]

Palatnik de Sousa I, Maria Bernardes Rebuzzi Vellasco M, Costa da Silva E. Local interpretable model-agnostic explanations for classification of lymph node metastases. Sensors (Basel) 2019;19(13):2969. https://doi.org/10.3390/s19132969.

[75]

R€ az T. Methods for identifying emergent concepts in deep neural networks. Patterns 2023;4(6):100761. https://doi.org/10.1016/j.patter.2023.100761.

[76]

Graziani M, Andrearczyk V, Marchand-Maillet S, et al. Concept attribution: explaining CNN decisions to physicians. Comput Biol Med 2020;123:103865. https://doi.org/10.1016/j.compbiomed.2020.103865.

[77]

Boehm KM, Khosravi P, Vanguri R, et al. Harnessing multimodal data integration to advance precision oncology. Nat Rev Cancer 2022;22(2):114–26. https://doi.org/10.1038/s41568-021-00408-3.

iLIVER
Cite this article:
Ding G-Y, Shi J-Y, Wang X-D, et al. Artificial intelligence-based pathological analysis of liver cancer: Current advancements and interpretative strategies. iLIVER, 2024, 3(1). https://doi.org/10.1016/j.iliver.2024.100082

207

Views

0

Crossref

Altmetrics

Received: 02 December 2023
Revised: 25 December 2023
Accepted: 08 January 2024
Published: 08 February 2024
© 2024 The Authors. Tsinghua University Press.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return