AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

Characterization of isoniazid resistance and genetic mutations in isoniazid-resistant and rifampicin-susceptible Mycobacterium tuberculosis in China

Dongxin LiuaBing ZhaobYang ZhengbXichao OubShengfen WangbYang ZhoubYuanyuan SongbHui Xiab( )Qiang Weia( )YanLin Zhaob( )
National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China
National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
Show Author Information

Highlights

• We described the genotypic characterization of isoniazid-resistant and rifampicin-susceptible TB.

• China had a modest prevalence of isoniazid-resistant and rifampicin-susceptible TB.

• Our study found the low resistance rates for pyrazinamide, ethambutol, and fluoroquinolones in isoniazid-resistant and rifampicin-susceptible TB.

Abstract

Background

Patients with tuberculosis resistant to isoniazid but susceptible to rifampicin (Hr-Rs TB) remain a neglected demographic, despite a high disease burden and poor outcomes of these patients. The aim of this study was to investigate the characteristics of isoniazid-resistance-related mutations in Mycobacterium tuberculosis and resistance rates to drugs included in WHO-recommended regimens for Hr-Rs patients.

Methods

Mycobacterium tuberculosis isolates (n = 4922) obtained from national tuberculosis drug-resistance surveillance were subjected to whole-genome sequencing to identify Hr-Rs strains. The minimal inhibitory concentrations (MICs) were established for the Hr-Rs strains to determine the isoniazid resistance levels. We also identified drug-resistance-associated mutations for five drugs (fluoroquinolones, ethambutol, pyrazinamide, streptomycin, and amikacin) in the Hr-Rs strains.

Results

Of the 4922 strains, 384 (7.8 %) were Hr-Rs. The subculture of seven strains failed, so 377 (98.2 %) strains underwent phenotypic MIC testing. Among the 384 genotypic Hr-Rs strains, 242 (63.0 %) contained thekatG Ser315Thr substitution; 115 (29.9 %) contained the -15C>T in the promoter region of the fabG1 gene; and 16 (4.2 %) contained Ser315Asn in the katG gene. Of the 239 strains with the Ser315Thr substitution, 229 (95.8 %) had MIC ≥ 2 μg/mL, and of the 114 strains with the -15C>T mutation, 103 (90.4 %) had 0.25 μg/mL ≤ MIC ≤ 1 μg/mL. The genotypic resistance rates were 0.8 % (3/384) for pyrazinamide, 2.3 % (9/384) for ethambutol and fluoroquinolones; 39.6 % (152/384) of the strains were resistant to streptomycin, but only 0.5 % (2/384) of the strains were resistant to amikacin.

Conclusion

Ser315Thr in katG was the predominant mutation conferring the Hr-Rs phenotype, followed by thefabG1 -15C>T mutation. The combination of rifampicin, pyrazinamide, ethambutol, and levofloxacin should be effective in the treatment of patients with Hr-Rs tuberculosis because the resistance rates for these drugs in China are low.

Electronic Supplementary Material

Download File(s)
imj-3-3-100129_ESM.zip (443.6 KB)

References

[1]

M Gegia, N Winters, A Benedetti, et al., Treatment of isoniazid-resistant tuberculosis with first-line drugs: a systematic review and meta-analysis, Lancet Infect. Dis. 17 (2) (2017) 223–234, doi:10.1016/S1473-3099(16)30407-8.

[2]

D Menzies, A Benedetti, A Paydar, et al., Standardized treatment of active tuberculosis in patients with previous treatment and/or with mono-resistance to isoniazid: a systematic review and meta-analysis, PLoS Med. 6 (9) (2009) e1000150, doi:10.1371/journal.pmed.1000150.

[3]

KR Jacobson, D Theron, TC Victor, et al., Treatment outcomes of isoniazid-resistant tuberculosis patients, Western Cape Province, South Africa, Clin. Infect. Dis. 53 (4) (2011) 369–372, doi:10.1093/cid/cir406.

[4]

C Dye, MA Espinal, Will tuberculosis become resistant to all antibiotics? Proc. R. Soc. Lond. B 268 (1462) (2001) 45–52, doi:10.1098/rspb.2000.1328.

[5]

D Liu, F Huang, G Zhang, et al., Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China, Clin. Microbiol. Infect. 28 (5) (2022) 731.e9–731731.e15, doi:10.1016/j.cmi.2021.09.014.

[6]

C Consortium, Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach, Nat. Commun. 15 (1) (2024) 488, doi:10.1038/s41467-023-44325-5.

[7]

MA Zuur, JG Pasipanodya, D van Soolingen, et al., Intermediate susceptibility dosedependent breakpoints for high-dose rifampin, isoniazid, and pyrazinamide treatment in multidrug-resistant tuberculosis programs, Clin. Infect. Dis. 67 (11) (2018) 1743–1749, doi:10.1093/cid/ciy346.

[8]

SE Smith, EV Kurbatova, JS Cavanaugh, et al., Global isoniazid resistance patterns in rifampin-resistant and rifampin-susceptible tuberculosis[Short communication, Int. J. Tuberc. Lung Dis. 16 (2) (2012) 203–205, doi:10.5588/ijtld.11.0445.

[9]

KJ Seung, S Keshavjee, ML Rich, Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis, Cold Spring Harb, Perspect. Med. 5 (9) (2015) a017863, doi:10.1101/cshperspect.a017863.

[10]

A Zumla, A George, V Sharma, et al., The WHO 2014 global tuberculosis report: further to go, Lancet Glob. Health 3 (1) (2015) e10–e12, doi:10.1016/S2214-109X(14)70361-4.

[11]

D van Soolingen, PW Hermans, PE de Haas, et al., Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis, J. Clin. Microbiol. 29 (11) (1991) 2578–2586, doi:10.1128/jcm.29.11.2578-2586.1991.

[12]
CLSIPerformance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes, 2nd ed., CLSI supplement M24S. Clinical and Laboratory Standards Institute, 2023.
[13]

C Yang, T Luo, X Shen, et al., Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using wholegenome sequencing and epidemiological investigation, Lancet Infect. Dis. 17 (3) (2017) 275–284, doi:10.1016/S1473-3099(16)30418-2.

[14]
World Health Organization. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and their Association with Drug Resistance, 2nd ed. Available from: https://www.who.int/publications/i/item/9789240082410.
[15]

AS Khan, JE Phelan, MT Khan, et al., Genetic mutations underlying isoniazidresistant Mycobacterium tuberculosis in Khyber Pakhtunkhwa, Pakistan, Tuberc. Edinb. Scotl. 138 (2023) 102286, doi:10.1016/j.tube.2022.102286.

[16]

M Seifert, D Catanzaro, A Catanzaro, et al., Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review, PLoS One 10 (3) (2015) e0119628, doi:10.1371/journal.pone.0119628.

[17]

PVK Thai, DTM Ha, NT Hanh, et al., Bacterial risk factors for treatment failure and relapse among patients with isoniazid resistant tuberculosis, BMC Infect. Dis. 18 (1) (2018) 112, doi:10.1186/s12879-018-3033-9.

[18]

NR Mvelase, Y Balakrishna, K Lutchminarain, et al., Evolving rifampicin and isoniazid mono-resistance in a high multidrug-resistant and extensively drug-resistant tuberculosis region: a retrospective data analysis, BMJ Open 9 (11) (2019) e031663, doi:10.1136/bmjopen-2019-031663.

[19]

N Palani, M Premkumar, V Vaishnavee, et al., Trends in rifampicin and isoniazid resistance in patients with presumptive TB, Int. J. Tuberc. Lung Dis. 26 (5) (2022) 446–453, doi:10.5588/ijtld.21.0455.

[20]

L Villegas, L Otero, TR Sterling, et al., Prevalence, risk factors, and treatment outcomes of isoniazid- and rifampicin-mono-resistant pulmonary tuberculosis in Lima, Peru, PLoS One 11 (4) (2016) e0152933, doi:10.1371/journal.pone.0152933.

[21]

Y Shao, Y Li, H Song, et al., A retrospective cohort study of isoniazid-resistant tuberculosis treatment outcomes and isoniazid resistance-associated mutations in Eastern China from 2013 to 2018, J. Glob. Antimicrob. Resist. 22 (2020) 847–853, doi:10.1016/j.jgar.2020.07.012.

[22]

Z Liu, M Zhang, J Wang, et al., Longitudinal analysis of prevalence and risk factors of rifampicin-resistant tuberculosis in Zhejiang, China, Biomed Res. Int. 2020 (2020) 3159482, doi:10.1155/2020/3159482.

[23]

L Pitso, S Potgieter, A Van der Spoel van Dijk, Prevalence of isoniazid resistance-conferring mutations associated with multidrug-resistant tuberculosis in Free State Province, South Africa, S. Afr. Med. J. 109 (9) (2019) 659–664, doi:10.7196/SAMJ.2019.v109i9.13730.

[24]

Y Liu, Y Sun, X Zhang, et al., Evaluation of the frequency of mutation genes in multidrug-resistant tuberculosis (MDR-TB) strains in Beijing, China, Epidemiol. Infect. 149 (2021) e21, doi:10.1017/S0950268820003131.

[25]

S Tahseen, FM Khanzada, AH Rizvi, et al., Isoniazid resistance profile and associated levofloxacin and pyrazinamide resistance in rifampicin resistant and sensitive isolates/from pulmonary and extrapulmonary tuberculosis patients in Pakistan: a laboratory based surveillance study 2015-19, PLoS One 15 (9) (2020) e0239328, doi:10.1371/journal.pone.0239328.

[26]

D van Soolingen, PE de Haas, HR van Doorn, et al., Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands, J. Infect. Dis. 182 (6) (2000) 1788–1790, doi:10.1086/317598.

[27]

S Gagneux, MV Burgos, K DeRiemer, et al., Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis, PLoS Pathog. 2 (6) (2006) e61, doi:10.1371/journal.ppat.0020061.

[28]

PP Salvatore, MC Becerra, P Abel zur Wiesch, et al., Fitness costs of drug resistance mutations in multidrug-resistant Mycobacterium tuberculosis: a household-based casecontrol study, J. Infect. Dis. 213 (1) (2016) 149–155, doi:10.1093/infdis/jiv347.

[29]

JMW Pinhata, AP Brandao, FF Mendes, et al., Correlating genetic mutations with isoniazid phenotypic levels of resistance in Mycobacterium tuberculosis isolates from patients with drug-resistant tuberculosis in a high burden setting, Eur. J. Clin. Microbiol. Infect. Dis. 40 (12) (2021) 2551–2561, doi:10.1007/s10096-021-04316-0.

[30]

P Lempens, CJ Meehan, K Vandelannoote, et al., Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by highconfidence resistance-conferring mutations, Sci. Rep. 8 (1) (2018) 3246, doi:10.1038/s41598-018-21378-x.

[31]

KE Dooley, S Miyahara, F von Groote-Bidlingmaier, et al., Early bactericidal activity of different isoniazid doses for drug-resistant tuberculosis (INHindsight): a randomized, open-label clinical trial, Am. J. Respir. Crit. Care Med. 201 (11) (2020) 1416–1424, doi:10.1164/rccm.201910-1960OC.

[32]
World Health OrganizationDrug-Resistant Tuberculosis Treatment, 2022 updateAvailable from https://tbksp.org/en/node/544.
[33]

K Romanowski, JR Campbell, O Oxlade, et al., The impact of improved detection and treatment of isoniazid resistant tuberculosis on prevalence of multi-drug resistant tuberculosis: a modelling study, PLoS One 14 (1) (2019) e0211355, doi:10.1371/journal.pone.0211355.

[34]

Y Lan, Y Li, L Chen, et al., Drug resistance profiles and trends in drug-resistant tuberculosis at a major hospital in Guizhou Province of China, Infect. Drug Resist. 12 (2019) 211–219, doi:10.2147/IDR.S188538.

[35]

H Xia, Y Zheng, D Liu, et al., Strong increase in moxifloxacin resistance rate among multidrug-resistant Mycobacterium tuberculosis isolates in China, 2007 to 2013, Microbiol. Spectr. 9 (3) (2021) e0040921, doi:10.1128/Spectrum.00409-21.

[36]

W He, Y Tan, C Liu, et al., Drug-resistant characteristics, genetic diversity, and transmission dynamics of rifampicin-resistant Mycobacterium tuberculosis in Hunan, China, revealed by whole-genome sequencing, Microbiol. Spectr. 10 (1) (2022) e0154321, doi:10.1128/spectrum.01543-21.

[37]

Z Sayfutdinov, A Kumar, D Nabirova, et al., Treatment outcomes of isoniazidresistant (rifampicin susceptible) tuberculosis patients in Uzbekistan, 2017-2018, Int. J. Environ. Res. Public Health 18 (6) (2021) 2965, doi:10.3390/ ijerph18062965.

Infectious Medicine
Article number: 100129
Cite this article:
Liu D, Zhao B, Zheng Y, et al. Characterization of isoniazid resistance and genetic mutations in isoniazid-resistant and rifampicin-susceptible Mycobacterium tuberculosis in China. Infectious Medicine, 2024, 3(3): 100129. https://doi.org/10.1016/j.imj.2024.100129

89

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 20 March 2024
Revised: 29 May 2024
Accepted: 05 August 2024
Published: 24 August 2024
© 2024 The Author(s).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return