PDF (25.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Full Length Article | Open Access

Influence of ammonium sulfate on the corrosion behavior of AZ31 magnesium alloy in chloride environment

Feng Gea,bZhongyu Cuia()Yue LiuaLi LeiaXin WangaHongzhi Cuia()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Beijing National Innovation Institute of Lightweight Ltd. Beijing, 101499, China
Show Author Information

Abstract

Electrochemical corrosion of AZ31 magnesium alloy in the NH4+-SO42−-Cl environment is studied. Effect of NH4+ overshadows that of Cl as the (NH4)2SO4 concentration is 0.005 M or higher, yielding an evolution from localized corrosion to uniform corrosion. Acceleration effect of NH4+ can be attributed to that (ⅰ) NH4+ dissolves the inner MgO and hinders the precipitation of Mg(OH)2 and (ⅱ) the buffering ability of NH4+ provides H+, enhances the hydrogen evolution, and expedites the corrosion process. The latter is demonstrated as the dominant factor with the results in unbuffered and buffered environments. The severe corrosion and hydrogen process in NH4+-containing solution results in a high Hads coverage and yields an inductive loop within the low frequency. Meanwhile, SO42− is helpful in generating cracked but partially protective corrosion products, while Cl could broaden the corrosion area beneath the corrosion product.

References

[1]

R.-.J. Huang, Y. Zhang, C. Bozzetti, K.-.F. Ho, J.-.J. Cao, Y. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, F. Canonaco, P. Zotter, R. Wolf, S.M. Pieber, E.A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I.E. Haddad, A.S.H. Prévôt, High secondary aerosol contribution to particulate pollution during haze events in China, Nature 514 (2014) 218–222.

[2]

J. Gu, Z. Bai, W. Li, L. Wu, A. Liu, H. Dong, Y. Xie, Chemical composition of PM2.5 during winter in Tianjin, China, Particuology 9 (2011) 215–221.

[3]

F. Zhang, L. Xu, J. Chen, Y. Yu, Z. Niu, L. Yin, Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–May 2010, Atmos. Res. 106 (2012) 150–158.

[4]

L. Xu, X. Chen, J. Chen, F. Zhang, C. He, J. Zhao, L. Yin, Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China, Atmos. Res. 104 (2012) 264–272.

[5]

Z. Cui, F. Ge, Y. Lin, L. Wang, L. Lei, H. Tian, M. Yu, X. Wang, Corrosion behavior of AZ31 magnesium alloy in the chloride solution containing ammonium nitrate, Electrochim. Acta 278 (2018) 421–437.

[6]

M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci. 89 (2017) 92–193.

[7]

K. Nie, X. Wang, K. Deng, X. Hu, K. Wu, Magnesium matrix composite reinforced by nanoparticles–a review, J. Magnes. Alloy 9 (2021) 57–77.

[8]

Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloy 9 (2021) 705–747.

[9]

G. Song, A. Atrens, D.S. John, X. Wu, J. Nairn, The anodic dissolution of magnesium in chloride and sulphate solutions, Corros. Sci. 39 (1997) 1981–2004.

[10]

G. Baril, N. Pebere, The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions, Corros. Sci. 43 (2001) 471–484.

[11]

D. Mei, S.V. Lamaka, X. Lu, M.L. Zheludkevich, Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – a critical review, Corros. Sci. 171 (2020) 108722.

[12]

H. Wang, Y. Song, D. Shan, E.-.H. Han, Effects of corrosive media on the localized corrosion forms of Mg-3Zn alloy, Corros. Commun. 2 (2021) 24–32.

[13]

M.G. Acharya, A.N. Shetty, The corrosion behavior of AZ31 alloy in chloride and sulfate media–a comparative study through electrochemical investigations, J. Magnes. Alloy 7 (2019) 98–112.

[14]

M. Salgueiro Azevedo, C. Allély, K. Ogle, P. Volovitch, Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate, Corros. Sci. 90 (2015) 472–481.

[15]

D. Battocchi, A. Simoes, D. Tallman, G. Bierwagen, Comparison of testing solutions on the protection of Al-alloys using a Mg-rich primer, Corros. Sci. 48 (2006) 2226–2240.

[16]

R. Lobnig, R. Frankenthal, D. Siconolfi, J. Sinclair, The effect of submicron ammonium sulfate particles on the corrosion of copper, J. Electrochem. Soc. 140 (1993) 1902–1907.

[17]

R. Lobnig, D. Siconolfi, J. Maisano, G. Grundmeier, H. Streckel, R. Frankenthal, M. Stratmann, J. Sinclair, Atmospheric corrosion of aluminum in the presence of ammonium sulfate particles, J. Electrochem. Soc. 143 (1996) 1175–1182.

[18]

R. Lobnig, D. Siconolfi, L. Psota-Kelty, G. Grundmeier, R. Frankenthal, M. Stratmann, J. Sinclair, Atmospheric corrosion of zinc in the presence of ammonium sulfate particles, J. Electrochem. Soc. 143 (1996) 1539–1546.

[19]

Q. Qu, L. Li, W. Bai, C. Yan, C.-n. Cao, Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc, Corros. Sci. 47 (2005) 2832–2840.

[20]

H. Pan, H. Yu, F. Ge, Y. Lin, X. Wang, Z. Cui, Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution, J. Mater. Sci. Technol. 54 (2020) 1–13.

[21]

M. Salgueiro Azevedo, C. Allély, K. Ogle, P. Volovitch, Corrosion mechanisms of Zn(Mg, Al) coated steel: the effect of HCO3− and NH4+ ions on the intrinsic reactivity of the coating, Electrochim. Acta 153 (2015) 159–169.

[22]

G. Citterio, S.P. Trasatti, M. Trueba, M. Bestetti, A. Da Forno, An electrochemical impedance study of bare and anodized AZ31 Mg alloy in dilute Harrison solution, Surf. Coat. Tech. 254 (2014) 217–223.

[23]

Q. Jiang, K. Zhang, X. Li, Y. Li, M. Ma, G. Shi, J. Yuan, The corrosion behaviors of Mg–7Gd–5Y–1Nd–0.5Zr alloy under (NH4)2SO4, NaCl and Ca(NO3)2 salts spray condition, J. Magnes. Alloy 1 (2013) 230–234.

[24]

D. Buggio, M. Trueba, S.P. Trasatti, Corrosion of Mg alloy in the presence of ammonium ion. Evidence of hydride sub-products, Corros. Sci. 104 (2016) 173–186.

[25]

L. Cui, Z. Liu, P. Hu, J. Shao, X. Li, C. Du, B. Jiang, The corrosion behavior of AZ91D magnesium alloy in simulated haze aqueous solution, Materials 11 (2018) 970.

[26]

F. Cao, C. Zhao, G.-.L. Song, D. Zheng, The corrosion of pure Mg accelerated by haze pollutant ammonium sulphate, Corros. Sci. 150 (2019) 161–174.

[27]

G. Song, A. Atrens, D. StJohn, An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys, Magnes. Technol. 2001 (2001) 255–262.

[28]

Z. Cui, X. Li, K. Xiao, C. Dong, Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment, Corros. Sci. 76 (2013) 243–256.

[29]

Z. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci. 52 (2010) 579–588.

[30]

M. Ascencio, M. Pekguleryuz, S. Omanovic, An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: the influence of immersion time, Corros. Sci. 87 (2014) 489–503.

[31]

J. Li, Q. Jiang, H. Sun, Y. Li, Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution, Corros. Sci. 111 (2016) 288–301.

[32]

L. Yang, Q. Jiang, M. Zheng, B. Hou, Y. Li, Corrosion behavior of Mg–8Li–3Zn–Al alloy in neutral 3.5% NaCl solution, J. Magnes. Alloy 4 (2016) 22–26.

[33]

A.D. King, N. Birbilis, J.R. Scully, Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study, Electrochim. Acta 121 (2014) 394–406.

[34]

H. Pan, K. Pang, F. Cui, F. Ge, C. Man, X. Wang, Z. Cui, Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks' solution, Corros. Sci. 157 (2019) 420–437.

[35]

F. Cao, Z. Shi, J. Hofstetter, P.J. Uggowitzer, G. Song, M. Liu, A. Atrens, Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2, Corros. Sci. 75 (2013) 78–99.

[36]

G.S. Frankel, A. Samaniego, N. Birbilis, Evolution of hydrogen at dissolving magnesium surfaces, Corros. Sci. 70 (2013) 104–111.

[37]

F. Ge, J. Yin, Y. Liu, W. Leng, X. Wang, Z. Cui, Roles of pH in the NH4+-induced corrosion of AZ31 magnesium alloy in chloride environment, J. Magnes. Alloy (2021).

[38]

G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, V. Vivier, An Impedance Investigation of the Mechanism of Pure Magnesium Corrosion in Sodium Sulfate Solutions, J. Electrochem. Soc. 154 (2007) C108–C113.

[39]

N. Pebere, C. Riera, F. Dabosi, Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy, Electrochim. Acta 35 (1990) 555–561.

[40]

M.P. Gomes, I. Costa, N. Pébère, J.L. Rossi, B. Tribollet, V. Vivier, On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy, Electrochim. Acta 306 (2019) 61–70.

[41]

L. Prince, M.A. Rousseau, X. Noirfalise, L. Dangreau, L.B. Coelho, M.G. Olivier, Inhibitive effect of sodium carbonate on corrosion of AZ31 magnesium alloy in NaCl solution, Corros. Sci. 179 (2021) 109131.

[42]

P. Zhou, L. Yang, Y. Hou, G. Duan, B. Yu, X. Li, Y. Zhai, B. Zhang, T. Zhang, F. Wang, Grain refinement promotes the formation of phosphate conversion coating on Mg alloy AZ91D with high corrosion resistance and low electrical contact resistance, Corros. Commun. 1 (2021) 47–57.

[43]

G. Galicia, N. Pébère, B. Tribollet, V. Vivier, Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy, Corros. Sci. 51 (2009) 1789–1794.

[44]

G. Baril, C. Blanc, N. Pébère, AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures, J. Electrochem. Soc. 148 (2001) B489–B496.

[45]

A.D. Sudholz, K. Gusieva, X.B. Chen, B.C. Muddle, M.A. Gibson, N. Birbilis, Electrochemical behaviour and corrosion of Mg–Y alloys, Corros. Sci. 53 (2011) 2277–2282.

[46]

T. Zhang, G. Meng, Y. Shao, Z. Cui, F. Wang, Corrosion of hot extrusion AZ91 magnesium alloy. Part Ⅱ: effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy, Corros. Sci. 53 (2011) 2934–2942.

[47]

A. Atrens, Z. Shi, S.U. Mehreen, S. Johnston, G.-.L. Song, X. Chen, F. Pan, Review of Mg alloy corrosion rates, J. Magnes. Alloy 8 (2020) 989–998.

[48]

Y.S. Jeong, W.J. Kim, Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion, Corros. Sci. 82 (2014) 392–403.

[49]

S. Johnston, Z. Shi, A. Atrens, The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution, Corros. Sci. 101 (2015) 182–192.

[50]

M. Curioni, F. Scenini, T. Monetta, F. Bellucci, Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging, Electrochim. Acta 166 (2015) 372–384.

[51]

R.L. Liu, Z.R. Zeng, J.R. Scully, G. Williams, N. Birbilis, Simultaneously improving the corrosion resistance and strength of magnesium via low levels of Zn and Ge additions, Corros. Sci. 140 (2018) 18–29.

[52]

H. Torbati-Sarraf, S.A. Torbati-Sarraf, A. Poursaee, T.G. Langdon, Electrochemical behavior of a magnesium ZK60 alloy processed by high-pressure torsion, Corros. Sci. 154 (2019) 90–100.

[53]

Y. Song, D. Shan, R. Chen, E.-.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci. 51 (2009) 1087–1094.

[54]

J. Chen, J. Wang, E. Han, J. Dong, W. Ke, AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution, Electrochim. Acta 52 (2007) 3299–3309.

[55]

N. Dinodi, A.N. Shetty, Alkyl carboxylates as efficient and green inhibitors of magnesium alloy ZE41 corrosion in aqueous salt solution, Corros. Sci. 85 (2014) 411–427.

[56]

J.A. Yuwono, N. Birbilis, K.S. Williams, N.V. Medhekar, Electrochemical stability of magnesium surfaces in an aqueous environment, J. Phys. Chem. C 120 (2016) 26922–26933.

[57]

J.A. Yuwono, C.D. Taylor, G.S. Frankel, N. Birbilis, S. Fajardo, Understanding the enhanced rates of hydrogen evolution on dissolving magnesium, Electrochem. Commun. 104 (2019) 106482.

[58]

Y. Yang, F. Scenini, M. Curioni, A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution, Electrochim. Acta 198 (2016) 174–184.

[59]

T. Zhang, Y. Li, F. Wang, Roles of β phase in the corrosion process of AZ91D magnesium alloy, Corros. Sci. 48 (2006) 1249–1264.

[60]

M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, 2017.

[61]

G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, J. Electroanal. Chem. 176 (1984) 275–295.

[62]

Z. Cui, X. Li, K. Xiao, C. Dong, Z. Liu, L. Wang, Corrosion behavior of field-exposed zinc in a tropical marine atmosphere, Corrosion 70 (2014) 731–748.

[63]

L.-j. Yang, Y.-f. Li, Y.-h. Wei, L.-f. Hou, Y.-g. Li, Y. Tian, Atmospheric corrosion of field-exposed AZ91D Mg alloys in a polluted environment, Corros. Sci. 52 (2010) 2188–2196.

[64]

A. Adams, K. Eagle, R. Foley, Synergistic effects of anions in the corrosion of aluminum alloys, J. Electrochem. Soc. 119 (1972) 1692–1694.

[65]

M. Taheri, R.C. Phillips, J.R. Kish, G.A. Botton, Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM–EDS, Corros. Sci. 59 (2012) 222–228.

[66]

G.-.L. Song, K.A. Unocic, The anodic surface film and hydrogen evolution on Mg, Corros. Sci. 98 (2015) 758–765.

[67]

A. Atrens, G.-.L. Song, M. Liu, Z. Shi, F. Cao, M.S. Dargusch, Review of recent developments in the field of magnesium corrosion, Adv. Eng. Mater. 17 (2015) 400–453.

[68]

S. Fajardo, G.S. Frankel, Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium, Electrochim. Acta 165 (2015) 255–267.

[69]

M. Curioni, The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging, Electrochim. Acta 120 (2014) 284–292.

[70]

M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith, G.A. Botton, The role of aluminum distribution on the local corrosion resistance of the microstructure in a sand-cast AM50 alloy, Corros. Sci. 77 (2013) 151–163.

[71]

M. Esmaily, D.B. Blücher, J.E. Svensson, M. Halvarsson, L.G. Johansson, New insights into the corrosion of magnesium alloys — the role of aluminum, Scripta Mater 115 (2016) 91–95.

[72]

R. Lindström, L.G. Johansson, J.-.E. Svensson, The influence of NaNO3 on the atmospheric corrosion of zinc, J. Electrochem. Soc. 150 (2003) B583-B588.

[73]

I. Katsounaros, G. Kyriacou, Influence of nitrate concentration on its electrochemical reduction on tin cathode: identification of reaction intermediates, Electrochim. Acta 53 (2008) 5477–5484.

[74]
C.-.K. Chang, C.-.H. Tu, C.-.S. Lin, Corrosion behavior of AZ31B magnesium alloy in potassium nitrate and sulfate solutions, Meeting Abstracts MA2019-01 (2019) 981.
Journal of Magnesium and Alloys
Pages 1082-1101
Cite this article:
Ge F, Cui Z, Liu Y, et al. Influence of ammonium sulfate on the corrosion behavior of AZ31 magnesium alloy in chloride environment. Journal of Magnesium and Alloys, 2024, 12(3): 1082-1101. https://doi.org/10.1016/j.jma.2022.07.014
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return