PDF (15.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Full Length Article | Open Access

Enhancing the anti-corrosion performance and biocompatibility of AZ91D Mg alloy by applying roughness pretreatment and coating with in-situ Mg(OH)2/Mg-Al LDH

Zexi ShaoaPubo Lia()Chao Zhangb()Bintao WuaChan TangaMangmang Gaoa
School of Materials and New Energy, Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, 750021, PR China
Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410000, PR China
Show Author Information

Abstract

Corrosion-resistant and biocompatible films were fabricated on AZ91D Mg alloy substrates by varying their roughness levels using metallographic preparation and subsequent hydrothermal procedures. The coated films comprised a mixed structure of Mg(OH)2 and Mg-Al layered double hydroxides (LDH) and exhibited excellent compactness. Coating film thickness increased with decreasing surface roughness. Corrosion resistance was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy. Metallographic pretreatment influenced the chemical activity of the Mg alloy surface and helped modulate the dissolution rate of the Mg17Al12 phase during the hydrothermal procedure. With decreasing roughness of the Mg substrate, the Al3+ concentration gradually increased, accelerating the in-situ formation of the Mg(OH)2/LDH composite coating and improving its crystallinity. A thick and dense Mg(OH)2/LDH coating was synthesized on the Mg substrate with the least roughness, substantially improving the corrosion resistance of the AZ91D alloy. The lowest corrosion current density ((5.73 ± 2.75) × 10−8 A·cm−2) was achieved, which was approximately three orders of magnitude less than that of bare AZ91D. Moreover, the coating demonstrated biocompatibility with no evident cytotoxicity, cellular damage, and hemolytic phenomena. This study provides an effective method for preparing coatings on Mg alloy surfaces with excellent corrosion resistance and biocompatibility.

References

[1]

P. Wan, L. Tan, K. Yang, J. Mater. Sci. Technol. 32 (9) (2016) 827–834.

[2]

L. Fan, W. Sun, Y. Zou, Q.-q. Xu, R.-.C. Zeng, J. Tian, J. Mater. Sci. Technol. 111 (2022) 167–180.

[3]

P.B. Li, W.T. Tan, M.M. Gao, K.G. Liu, Rare Met. 39 (6) (2020) 733–742.

[4]

W. Zai, X. Zhang, Y. Su, H.C. Man, G. Li, J. Lian, Surf. Coat. Technol. 397 (2020) 125919.

[5]

D. Tie, R. Guan, H. Liu, M. Chen, S.A. Ulasevich, E.V. Skorb, P. Holt-Torres, X. Lu, N. Hort, J. Magnes. Alloy. 10 (6) (2022) 1631–1639.

[6]

D. Bairagi, S. Mandal, J. Magnes. Alloy. 10 (3) (2022) 627–669.

[7]

L. Guo, B. Yu, P. Zhou, T. Zhang, F. Wang, Corros. Sci. 183 (2021) 109329.

[8]

D. Zhang, J. Zhou, F. Peng, J. Tan, X. Zhang, S. Qian, Y. Qiao, Y. Zhang, X. Liu, J. Mater. Sci. Technol. 105 (2022) 57–67.

[9]

Q. Xia, X. Li, Z. Yao, Z. Jiang, Surf. Coat. Technol. 409 (2021) 126874.

[10]

D.B. Prabhu, P. Gopalakrishnan, K.R. Ravi, J. Alloys Compd. 812 (2020) 152146.

[11]

J.-.H. Park, K.-.P. Ko, T. Hagio, R. Ichino, M.-.H. Lee, Corros. Sci. 202 (2022) 110330.

[12]

W. Shang, F. Wu, S. Jiang, Y. Wen, N. Peng, J. Jiang, J. Mol. Liq. 330 (2021) 115606.

[13]

Y.X. Zhu, G.L. Song, P.P. Wu, J.F. Huang, D.J. Zheng, J. Alloys Compd. 855 (2021) 157550.

[14]

Y. Cao, D. Zheng, F. Zhang, J. Pan, C. Lin, J. Mater. Sci. Technol. 102 (2022) 232–263.

[15]

J. Li, N. He, J. Li, Q. Fu, M. Feng, W. Jin, W. Li, Y. Xiao, Z. Yu, P.K. Chu, Surf. Coat. Technol. 439 (2022) 128442.

[16]

P.B. Li, Y.X. Wang, Z.X. Shao, B.T. Wu, H. Li, M.M. Gao, K.G. Liu, K.R. Shi, Rare Met. 41 (8) (2022) 2745–2758.

[17]

W. Wu, X. Sun, C.-.L. Zhu, F. Zhang, R.-.C. Zeng, Y.-.H. Zou, S.-.Q. Li, Prog. Org. Coat. 147 (2020) 105746.

[18]

Y. Zhu, G. Wu, Y.-.H. Zhang, Q. Zhao, Appl. Surf. Sci. Adv. 257 (14) (2011) 6129–6137.

[19]

C.-.Y. Li, L. Gao, X.-.L. Fan, R.-.C. Zeng, D.-.C. Chen, K.-.Q. Zhi, Bioact. Mater. 5 (2) (2020) 364–376.

[20]

N. Kamiyama, G. Panomsuwan, E. Yamamoto, T. Sudare, N. Saito, T. Ishizaki, Surf. Coat. Technol. 286 (2016) 172–177.

[21]

G.J. Gao, M.Q. Zeng, E.L. Zhang, R.C. Zeng, L.Y. Cui, D.k. Xu, F.Q. Wang, M.B. Kannan, J. Mater. Sci. Technol. 83 (2021) 161–178.

[22]

Y.-.X. Zhu, G.-.L. Song, P.-.P. Wu, D.-.J. Zheng, Z.-.M. Wang, Corros. Sci. 184 (2021) 109395.

[23]

G.-.L. Song, JOM 64 (6) (2012) 671–679.

[24]

Z. Pu, G.L. Song, S. Yang, J.C. Outeiro, O.W. Dillon, D.A. Puleo, I.S. Jawahir, Corros. Sci. 57 (2012) 192–201.

[25]

T. Hu, Y. Ouyang, Z.-.H. Xie, L. Wu, J. Mater. Sci. Technol. 92 (2021) 225–235.

[26]

J. Feng, Y. Chen, X. Liu, T. Liu, L. Zou, Y. Wang, Y. Ren, Z. Fan, Y. Lv, M. Zhang, Mater. Chem. Phys. 143 (1) (2013) 322–329.

[27]

Z. Dou, Y. Zhang, T. Shulha, R. Cui, M. Serdechnova, H. Tian, T. Yan, C. Blawert, L. Li, M.L. Zheludkevich, F. Chen, Surf. Coat. Technol. 439 (2022) 128414.

[28]

B. Wang, H. Zhang, D.G. Evans, X. Duan, Mater. Chem. Phys. 92 (1) (2005) 190–196.

[29]

H. Wu, L. Zhang, Y. Zhang, S. Long, X. Jie, J. Alloy. Compd. 834 (2020) 155107.

[30]

T. Shulha, M. Serdechnova, M.H. Iuzviuk, I.A. Zobkalo, P. Karlova, N. Scharnagl, D.C.F. Wieland, S.V. Lamaka, A.A. Yaremchenko, C. Blawert, M.L. Zheludkevich, J. Magnes. Alloy. 10 (5) (2022) 1268–1285.

[31]

Y. Song, D. Liu, W. Tang, K. Dong, D. Shan, E.H. Han, J. Magnes. Alloy. 9 (4) (2021) 1220–1232.

[32]

Z.-.Y. Ding, L.-.Y. Cui, X.-.B. Chen, R.-.C. Zeng, S.-.K. Guan, S.-.Q. Li, F. Zhang, Y.-.H. Zou, Q.-.Y. Liu, J. Alloys Compd. 764 (2018) 250–260.

[33]

M.P. Gomes, I. Costa, N. Pébère, J.L. Rossi, B. Tribollet, V. Vivier, Electrochim. Acta 306 (2019) 61–70.

[34]

M.A. Iqbal, M. Secchi, M.A. Iqbal, M. Montagna, C. Zanella, M. Fedel, Surf. Coat. Technol. 401 (2020) 126253.

[35]

Y. Cao, D. Zheng, C. Lin, Surf. Coat. Technol. 421 (2021) 127436.

[36]

Y. Chen, L. Wu, W. Yao, Z. Zhong, Y. Chen, J. Wu, F. Pan, Surf. Coat. Technol. 413 (2021) 127083.

[37]

Y. Cao, D. Zheng, X. Li, J. Lin, C. Wang, S. Dong, C. Lin, ACS Appl. Mater. Interface. 10 (17) (2018) 15150–15162.

[38]

J. Huang, G.-.L. Song, A. Atrens, M. Dargusch, J. Mater. Sci. Technol. 57 (2020) 204–220.

[39]

J. Chen, Y. Song, D. Shan, E.-.H. Han, Corros. Sci. 53 (10) (2011) 3281–3288.

[40]

J. Chen, Y. Song, D. Shan, E.-.H. Han, Corros. Sci. 63 (2012) 148–158.

[41]

T. Ishizaki, N. Kamiyama, K. Watanabe, A. Serizawa, Corros. Sci. 92 (2015) 76–84.

[42]

G. Shen, L. Zhang, Z. Gu, Z. Zheng, Y. Liu, G. Tan, X. Jie, Surf. Coat. Technol 437 (2022) 128354.

Journal of Magnesium and Alloys
Pages 2520-2533
Cite this article:
Shao Z, Li P, Zhang C, et al. Enhancing the anti-corrosion performance and biocompatibility of AZ91D Mg alloy by applying roughness pretreatment and coating with in-situ Mg(OH)2/Mg-Al LDH. Journal of Magnesium and Alloys, 2024, 12(6): 2520-2533. https://doi.org/10.1016/j.jma.2022.10.014
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return