PDF (10.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Full Length Article | Open Access

Breaking the trade off between corrosion resistance and fatigue lifetime of the coated Mg alloy through cold spraying submicron-grain Al alloy coatings

XiaoTao Luoa()YingKang WeiaJiHao ShenaNinshu MabChang-Jiu Lia()
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
Joining and Welding Research Institute (JWRI), Osaka University, Osaka 567-0047, Japan
Show Author Information

Abstract

Although magnesium (Mg) alloys are the lightest among structural metals, their inadequate corrosion resistance makes them difficult to be used in energy-saving lightweight structures. Moreover, the improvement in corrosion resistance by the conventional surface treatments is always achieved at the expense of sacrificing the fatigue lifetime. In this study, high purity aluminum (Al) and AlMgSi alloy coatings were deposited on Mg alloys via an in-situ micro-forging (MF) assisted cold spray (MFCS) process for simultaneous higher corrosion resistance and longer fatigue lifetime. Besides contributing to a highly dense microstructure, the in-situ MF also greatly refines the grain of the deposited Al alloy coating to the sub-micrometer range due to the enhanced dynamic recrystallization and also generates notable compressive residual stress up to 210 MPa within the AlMgSi coating. The absence of secondary phases in the AlMgSi alloy coatings enable the coated Mg alloy with corrosion resistance, which is even better than its bulk AlMgSi counterparts. The unique combination of refined microstructure and the prominent compressive residual stress within the AlMgSi coatings, effectively delayed the crack initiation upon repeated dynamic loading, thereby leading to ~10 times increase in the fatigue lifetime of the Mg Alloy. However, although residual stress is also generated in the submmicro-sized grained pure Al coating, the low intrinsic strength of the coating layer leads to a lower fatigue lifetime than the uncoated Mg alloy substrate. The present work is aimed to provide a facile approach to break the trade-off between corrosion resistance improvement and fatigue lifetime of the coated Mg alloys.

References

[1]

Z.X. W.u, W.A. Curtin, Nature 526 (2015) 62–67.

[2]

M. Esmaily, J.E. S.vensson, S. Fajardo, N. Birbilis, G.S. F.rankel, S. Virtanen, Prog. Mater. 89 (2017) 92–193.

[3]

W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. D.aniels, Y. Xiao, Nat. Mater. 14 (12) (2015) 1229.

[4]

G.S. Frankel, Nat. Mater. 14 (2015) 1.

[5]

J.E. G.ray, B. Luan, J. Cheminform. 336 (1–2) (2002) 88–113.

[6]

I.D. Graeve, I. Schoukens, A. Lanzutti, F. Andreatta, A. Alvarez-Pampliega, J.D. S.trycker, Corros. Sci. 76 (2013) 325–336.

[7]

J. Qian, J. Zhang, S. Li, C. Wang, Rare Metal Mat. Eng. (41) (2012) 360–363.

[8]

L.J. Bai, G. Kou, K. Zhao, G.T. Chen, F.X. Yan, J. Alloy. Compd. 775 (2019) 1077–1085.

[9]

Y. Wang, B. Liu, X. Zhao, X. Zhang, Y. Miao, N. Yang, B. Yang, L. Zhang, W. Kuang, J. Li, E. Ma, Z. Shan, Nat. Commun. 9 (1) (2018) 4058.

[10]

A. Kielbus, G. Moskal, R. Cibis, Procedia Eng. 10 (2011) 1841–1846.

[11]

Z. Niu, Z. Qu, T. Ma, X Jing, Appl. Mech. Mater. 644-650 (2014) 4798–4801.

[12]

M. Campo, M. Carboneras, M.D. López, B. Torres, P. Rodrigo, E. Otero, J. Rams, Surf. Coat. Technol. (203, 2009) 3224–3230.

[13]

Y. Tao, T. Xiong, Chao Sun, L. Kong, X. Cui, T. Li, G. Ling, Corros. Sci. 52 (2010) 3191.

[14]

H. Assadi, F.Gärtner H.Kreye, T. Klassen, Acta Mater. 116 (2016) 382–407.

[15]

A.J. E.ifert, J.P. T.homas, R.G. Rateick, Scr. Mater. 40 (1999) 929–935.

[16]

W. Zinn, B. Scholtes, J. Mater. Eng. Perform. 8 (1999) 145–153.

[17]

P. André, D.L. M.cdowell, E.P. Busso, S.D. Antolovich, Acta Mater. 107 (2016) 484–507.

[18]

S.N. Tsn, I.S. Park, M.H. Lee, Surface Modification of Magnesium and its Alloys for Biomedical Applications, Woodhead Publishing, 2015.

[19]

M.P. Souza, R.C. Nascimento, I.M. Miguel, W.L. Pigatin, H.J.C. Voorwald, Surf. Coat. Technol 138 (2–3) (2001) 113–124.

[20]

M.Y.P. Costa, M.L.R. Venditti, M.O.H. Cioffi, H.J.C. Voorwald, V.A. G.uimarães, R. Ruas, Int. J. Fatigue 33 (2011) 759–765.

[21]

W. Dai, Z. Liu, C. Li, D. He, D. Jia, Y. Zhang, Z. Tan, Int. J. Fatigue 124 (2019) 493–502.

[22]

X.T. Luo, C.X. Li, C.J. Li, Surf. Coat. Technol. 254 (2014) 11–20.

[23]

X.T. Luo, Y.K. Wei, Y. Wang, C.J. Li, Mater. Des. 85 (2015) 527–533.

[24]

Y.K. Wei, Y.J. Li, Y. Zhang, X.T. Luo, Y. Wang, C.J. Li, Corros. Sci. 138 (2018) 105–115.

[25]

Y.K. Wei, X.T. Luo, X. Chu, G.S. Huang, C.J. Li, Mater. Sci. Eng. A 776 (2020) 139024.

[26]

S. Suresh, S.W. Lee, M. Aindow, H.D. Brody, V.K. C.hampagne, A.M. Dongare, Acta Mater. 182 (2020) 197–206.

[27]

M. Daroonparvar, M.U.F. Khan, Y. Saadeh, C.M. Kay, A.K. Kasar, P. Kumar, L. Esteves, P.Menezes M.Misra, P.R. Kalvala, H.R. Bakhsheshi-Rad, R.K. Gupta, Corros. Sci. 176 (2020) 109209.

[28]

Z. Liu, M.Haché H.Wang, E. Irissou, Y. Zou, Scr. Mater. 177 (2020) 96–100.

[29]

R.E. Little, E.H. Jebe, Statistical Design of Fatigue Experiments, Wiley, New York, 1975.

[30]

W.P. T.ong, N.R. T.ao, Z.B. Wang, J. Lu, K. Lu, Science 299 (2003) 686–688.

[31]

G. Bae, J.I. Jang, C. Lee, Surf. Coat. Technol. 60 (8) (2012) 3524–3535.

[32]

N. Bay, C. Clemensen, O. Juelstorp, T. Wanheim, C.I.R.P. Ann, Manuf. Technol. 34 (1985) 221–224.

[33]

H. Assadi, F. Gärtner, T. Klassen, H. Kreye, Scr. Mater. 162 (2019) 512–514.

[34]

A. Rao, A. Kumar, Appl. Surf. Sci. 396 (2017) 760–773.

[35]

P. Vo, E. Irissou, J.G. Legoux, S. Yue, J. Therm. Spray Technol. 22 (6) (2013) 954–964.

[36]

Y. Tao, T. Xiong, C. Sun, L. Kong, X. Cui, T. Li, Corros. Sci. 52 (10) (2010) 3191–3197.

[37]

K. Lu, Science 345 (6203) (2014) 1455–1456.

[38]

X.T. Luo, Y. Ge, Y. Xie, R.Huang Y.K.Wei, N. Ma, C.S. Ramachandran, C.J. Li, J. Mater. Sci. Technol. 67 (2021) 105–115.

[39]

Y.J. Li, X.T.Luo Y.K.Wei, C.J. Li, N. Ma, J. Mater. Sci. Technol. 40 (2020) 185–195.

[40]

F. Cao, G.L. Songa, A. Atrens, Prog. Mater. Sci. 89 (2017) 92–193.

[41]

Ying-Kang Wei, Xiao-Tao Luo, Chang-Jiu Li, J. Alloy. Compd. 806 (2019) 1116–1126.

[42]

G. Baril, C. Blanc, N. Pébère, J. Electrochem. Soc. 148 (2001) 489-496 B.

[43]

G.L. Makar, J. Kruger, Mater. Rev. 38 (1993) 138–153.

[44]
J.C. Bailey, F.C. Portera, A.W. Pearson, R.A. Jarman, Corrosion 1 (1994) 37 4:3-3.
[45]

Y. Liu, Q. Pan, H. Li, Z. Huang, J. Ye, M. Li, J. Alloy. Compd. 792 (2019) 32–45.

[46]

J. Victorde, S. Araujo, F.M.Queiroz U.Donatus, M.X.Milagre M.Terada, M.C. A.lencar, I. Costa, Corros. Sci. 133 (2018) 132–140.

[47]

P. Fang, Y. Xu, X. Li, Y. Chen, Rare Metal Mater. Eng. 47 (2) (2018) 423–430.

[48]
O. Neikov, S. Naboychenko, N.V. Yefimov, in: Handbook of Non-Ferrous Metal Powders, 2nd ed., Elsevier, 2019, pp. 125–185.
[49]

C. Si, X. Tang, X. Zhang, J. Wang, W. Wu, Mater. Des. 118 (2017) 66–74.

[50]

J. Long, Q. Pan, N. Tao, M. Dao, S. Suresh, L. Lu, Acta Mater. 166 (2018) 56–66.

[51]

H.W. Huang, Z.B. Wang, J. Lu, K. Lu, Acta Mater. 87 (2015) 150–160.

[52]
R.H. David, J. Michael, F. Ashby, Engineering materials 1. (5th ed.). (2019) 325–347, doi:10.1016/C2015-0-04446-X.
[53]

P. Zhang, J.Bian K.Shi, Y.Peng J.Zhang, G. Liu, A. Deschamps, J. Sun, Acta Mater. 207 (2021) 116682.

[54]

Y.K. Wei, X.T. Luo, C.X. Li, C.J. Li, J. Therm. Spray Technol. 26 (2017) 173–183.

[55]

Y.B. Lei, Z.B. Wang, J.L. Xu, K. Lu, Acta Mater. 168 (2019) 133–142.

[56]

L. Jing, Q. Pan, J. Long, N. Tao, L. Lu, Scr. Mater. 161 (2019) 74–77.

Journal of Magnesium and Alloys
Pages 4229-4243
Cite this article:
Luo X, Wei Y, Shen J, et al. Breaking the trade off between corrosion resistance and fatigue lifetime of the coated Mg alloy through cold spraying submicron-grain Al alloy coatings. Journal of Magnesium and Alloys, 2024, 12(10): 4229-4243. https://doi.org/10.1016/j.jma.2022.12.011
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return