PDF (9.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Letter | Open Access

Interface and energy band manipulation of Bi2O3-Bi2S3 electrode enabling advanced magnesium-ion storage

Qiang TangaYingze Songa()Xuan CaoaCheng YangbDong WangcTingting Qinb()Wei Zhangd()
State Key Laboratory of Environment-Friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
Show Author Information

Abstract

Rechargeable magnesium-ion (Mg-ion) batteries have attracted wide attention for energy storage. However, magnesium anode is still limited by the irreversible Mg plating/stripping procedure. Herein, a well-designed binary Bi2O3-Bi2S3 (BO-BS) heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage. The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi2S3 side and electron-poor O center at Bi2O3 side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system. Moreover, the as-designed heterogenous interface also benefits to maintaining the electrode integrity. With these advantages, the BO-BS electrode displays a remarkable capacity of 150.36 mAh g−1 at 0.67 A g–1 and a superior cycling stability. This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.

References

[1]

L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, ACS Energy Lett. 2 (5) (2017) 1115–1121, doi:10.1021/acsenergylett.7b00040.

[2]

Z. Pan, T. Qin, W. Zhang, X. Chu, T. Dong, N. Yue, Z. Wang, W. Zheng, J. Energy Chem. 68 (2022) 42–48, doi:10.1016/j.jechem.2021.11.031.

[3]

W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X.W. Lou, Energy Environ. Sci. 9 (9) (2016) 2881–2891, doi:10.1039/c6ee01871h.

[4]

N. Prasad, B. Karthikeyan, Appl. Phys. A Mater. 124 (6) (2018) 421, doi:10.1007/s00339-018-1802-3.

[5]

Y. Zhu, J. Yin, A.H. Emwas, O.F. Mohammed, H.N. Alshareef, Adv. Funct. Mater. 31 (50) (2021) 2107523, doi:10.1002/adfm.202107523.

[6]

C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang, C. Wang, Y. Lu, L. Yin, Energy Environ. Sci. 11 (11) (2018) 3201–3211, doi:10.1039/c8ee01046c.

[7]

C. Yan, Y. Zhu, Y. Li, Z. Fang, L. Peng, X. Zhou, G. Chen, G. Yu, Adv. Funct. Mater. 28 (7) (2018) 1705951, doi:10.1002/adfm.201705951.

[8]

Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Angew. Chem. Int. Ed. 55 (10) (2016) 3408–3413, doi:10.1002/anie.201510978.

[9]

T. Qin, D. Wang, X. Zhang, Y. Wang, N.E. Drewett, W. Zhang, T. Dong, T. Li, Z. Wang, T. Deng, Z. Pan, N. Yue, R. Yang, K. Huang, S. Feng, R. Huang, W. Zheng, Energy Storage Mater. 36 (2021) 376–386, doi:10.1016/j.ensm.2021.01.013.

[10]

H. Shan, J. Qin, Y. Ding, H.M.K. Sari, X. Song, W. Liu, Y. Hao, J. Wang, C. Xie, J. Zhang, X. Li, Adv. Mater. 33 (37) (2021) 2102471, doi:10.1002/adma.202102471.

[11]

K. Biswas, L.-.D. Zhao, M.G. Kanatzidis, Adv. Energy Mater. 2 (6) (2012) 634–638, doi:10.1002/aenm.201100775.

[12]

Z.H. Ge, B.P. Zhang, P.P. Shang, J.F. Li, J. Mater. Chem. 21 (25) (2011) 9194–9200, doi:10.1039/c1jm11069a.

[13]

G. Kresse, J. Hafner, Phys. Rev. B 47 (1) (1993) 558–561, doi:10.1103/PhysRevB.47.558.

[14]

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (18) (1996) 3865–3868, doi:10.1103/PhysRevLett.77.3865.

[15]

J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, K. Burke, Phys. Rev. Lett. 100 (13) (2008) 136406, doi:10.1103/PhysRevLett.100.136406.

[16]

P.E. Blöchl, Phys. Rev. B 50 (24) (1994) 17953–17979, doi:10.1103/PhysRevB.50.17953.

[17]

B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59 (1999) 7413, doi:10.1103/PhysRevB.59.7413.

[18]

R. Asahi, W. Mannstadt, A.J. Freeman, Phys. Rev. B 59 (11) (1999) 7486–7492, doi:10.1103/PhysRevB.59.7486.

[19]

J. Iniguez, D. Vanderbilt, L. Bellaiche, Phys. Rev. B 67 (2003) 224107, doi:10.1103/PhysRevB.67.224107.

[20]

G.H. Zhong, J.L. Wang, Z. Zeng, J. Phys. Conf. Ser. 29 (2006) 106–109, doi:10.1088/1742-6596/29/1/020.

[21]

T. Qin, X. Zhang, D. Wang, T. Deng, H. Wang, X. Liu, X. Shi, Z. Li, H. Chen, X. Meng, W. Zhang, W. Zheng, ACS Appl. Mater. Interfaces 11 (2) (2019) 2103–2111, doi:10.1021/acsami.8b19575.

[22]

X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Adv. Funct. Mater. 26 (23) (2016) 4067–4077, doi:10.1002/adfm.201505509.

[23]

D. Wu, G. Huo, W. Chen, X.Z. Fu, J.L. Luo, Appl. Catal. B Environ. 271 (2020) 118957, doi:10.1016/j.apcatb.2020.118957.

[24]

J. Yi, K. Liao, C. Zhang, T. Zhang, F. Li, H. Zhou, ACS Appl. Mater. Interfaces 7 (20) (2015) 10823–10827, doi:10.1021/acsami.5b01727.

[25]

J. Mei, T. Liao, G.A. Ayoko, Z. Sun, ACS Appl. Mater. Interfaces 11 (31) (2019) 28205–28212, doi:10.1021/acsami.9b09882.

[26]

H. Ticha, M. Kincl, L. Tichy, Mater. Chem. Phys. 138 (2–3) (2013) 633–639, doi:10.1016/j.matchemphys.2012.12.032.

[27]

F. Chang, B. Lei, C. Yang, J. Wang, X. Hu, Chem. Eng. J. 413 (2021) 127443, doi:10.1016/j.cej.2020.127443.

[28]

P. Veerakumar, G. Jaysiva, S.M. Chen, K.C. Lin, ACS Appl. Mater. Interfaces 14 (4) (2022) 5908–5920, doi:10.1021/acsami.1c16723.

[29]

Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef, W. Li, A.P. O'Mullane, J. Yang, W. Luo, K. Ostrikov, Y. Gu, Z. Sun, Nano Micro Lett. 4 (1) (2022) 90 1, doi:10.1007/s40820-022-00832-6.

[30]

R. Liu, L. Ma, G. Niu, X. Li, E. Li, Y. Bai, G. Yuan, Adv. Funct. Mater. 27 (29) (2017) 1701635, doi:10.1002/adfm.201701635.

[31]

H. Zheng, Y. Zeng, H. Zhang, X. Zhao, M. Chen, J. Liu, X. Lu, J. Power Sources. 433 (2019) 228730, doi:10.1016/j.jpowsour.2019.05.090.

[32]

M. Xu, Y. Niu, X. Teng, S. Gong, L. Ji, Z. Chen, J. Energy Chem. 65 (2022) 605–615, doi:10.1016/j.jechem.2021.06.028.

[33]

J. Li, Z. Li, X. Liu, C. Li, Y. Zheng, K.W.K. Yeung, Z. Cui, Y. Liang, S. Zhu, W. Hu, Y. Qi, T. Zhang, X. Wang, S. Wu, Nat. Commun. 12 (1) (2021) 1224, doi:10.1038/s41467-021-21435-6.

[34]

L. Cao, X. Liang, X. Ou, X. Yang, Y. Li, C. Yang, Z. Lin, M. Liu, Adv. Funct. Mater. 30 (16) (2020) 1910732, doi:10.1002/adfm.201910732.

[35]

Y. Sang, X. Cao, G. Dai, L. Wang, Y. Peng, B. Geng, J. Hazard. Mater. 381 (2020) 120942, doi:10.1016/j.jhazmat.2019.120942.

[36]

W. Luo, F. Li, Q. Li, X. Wang, W. Yang, L. Zhou, L. Mai, ACS Appl. Mater. Interfaces 10 (8) (2018) 7201–7207, doi:10.1021/acsami.8b01613.

[37]

P.F. Sui, C. Xu, M.N. Zhu, S. Liu, Q. Liu, J.L. Luo, Small 18 (1) (2022) 2105682, doi:10.1002/smll.202105682.

[38]

X. Yang, P. Deng, D. Liu, S. Zhao, D. Li, H. Wu, Y. Ma, B.Y. Xia, M. Li, C. Xiao, S. Ding, J. Mater. Chem A 8 (5) (2020) 2472–2480, doi:10.1039/c9ta11363k.

[39]

S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Angew. Chem. Int. Ed. 58 (39) (2019) 13828–13833, doi:10.1002/anie.201907674.

[40]

W. Wang, Y. Xiao, X. Li, Q. Cheng, G. Wang, Chem. Eng. J. 371 (2019) 327–336, doi:10.1016/j.cej.2019.04.048.

[41]

Y.L. Liu, M.Q. Li, G.G. Wang, L.Y. Dang, F. Li, M.E. Pam, H.Y. Zhang, J.C. Han, H.Y. Yang, Energy Environ. Mater. 4 (3) (2020) 465–473, doi:10.1002/eem2.12130.

[42]

X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu, B. Wang, C. Sun, Y. Jiang, Q. Zhang, Y. Yu, Adv. Funct. Mater. 31 (22) (2021) 2011264, doi:10.1002/adfm.202011264.

[43]

Q. Li, S. Jing, Z. Yong, Q. Zhang, C. Liu, K. Zhu, Y. Feng, W. Gong, Y. Yao, Energy Storage Mater. 42 (2021) 815–825, doi:10.1016/j.ensm.2021.08.032.

[44]

T. Qin, W. Zhang, Y. Ma, W. Zhang, T. Dong, X. Chu, T. Li, Z. Wang, N. Yue, H. Liu, L. Zheng, X. Fan, X. Lang, Q. Jiang, W. Zheng, Energy Storage Mater. 45 (2022) 33–39, doi:10.1016/j.ensm.2021.11.032.

[45]

T. Dong, W. Yi, T. Deng, T. Qin, X. Chu, H. Yang, L. Zheng, S.J. Yoo, J.G. Kim, Z. Wang, Y. Wang, W. Zhang, W. Zheng, Energy Environ. Mater. (2022).

[46]

G. Zan, T. Wu, P. Hu, Y. Zhou, S. Zhao, S. Xu, J. Chen, Y. Cui, Q. Wu, Energy Storage Mater 28 (2020) 82–90, doi:10.1016/j.ensm.2020.02.027.

[47]

T. Tang, Z. Yin, J. Chen, S. Zhang, W. Sheng, W. Wei, Y. Xiao, Q. Shi, S. Cao, Chem. Eng. J. 417 (2021) 128058, doi:10.1016/j.cej.2020.128058.

[48]

H. Zheng, H. Li, M. Yu, M. Zhang, Y. Tong, F. Cheng, X. Lu, J. Mater. Chem. A 5 (48) (2017) 25539–25544, doi:10.1039/c7ta08451j.

[49]

H. Cheng, J. Wang, Y. Yang, H. Shi, J. Shi, X. Jiao, P. Han, X. Yao, W. Chen, X. Wei, P.K. Chu, X. Zhang, Small 18 (26) (2022) 2200857, doi:10.1002/smll.202200857.

[50]

C. Li, Y. Liu, Z. Zhuo, H. Ju, D. Li, Y. Guo, X. Wu, H. Li, T. Zhai, Adv. Funct. Mater. 8 (27) (2018) 1801775, doi:10.1002/aenm.201801775.

[51]

Y. Zhang, Z. Jin, D. Liu, Z. Tan, B.B. Mamba, A.T. Kuvarega, J. Gui, ACS Appl. Mater. Interfaces 5 (4) (2022) 5448–5458, doi:10.1021/acsanm.2c00446.

Journal of Magnesium and Alloys
Pages 3543-3552
Cite this article:
Tang Q, Song Y, Cao X, et al. Interface and energy band manipulation of Bi2O3-Bi2S3 electrode enabling advanced magnesium-ion storage. Journal of Magnesium and Alloys, 2024, 12(9): 3543-3552. https://doi.org/10.1016/j.jma.2023.01.007
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return