Rechargeable magnesium-ion (Mg-ion) batteries have attracted wide attention for energy storage. However, magnesium anode is still limited by the irreversible Mg plating/stripping procedure. Herein, a well-designed binary Bi2O3-Bi2S3 (BO-BS) heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage. The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi2S3 side and electron-poor O center at Bi2O3 side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system. Moreover, the as-designed heterogenous interface also benefits to maintaining the electrode integrity. With these advantages, the BO-BS electrode displays a remarkable capacity of 150.36 mAh g−1 at 0.67 A g–1 and a superior cycling stability. This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.
L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, ACS Energy Lett. 2 (5) (2017) 1115–1121, doi:10.1021/acsenergylett.7b00040.
Z. Pan, T. Qin, W. Zhang, X. Chu, T. Dong, N. Yue, Z. Wang, W. Zheng, J. Energy Chem. 68 (2022) 42–48, doi:10.1016/j.jechem.2021.11.031.
W. Zuo, W. Zhu, D. Zhao, Y. Sun, Y. Li, J. Liu, X.W. Lou, Energy Environ. Sci. 9 (9) (2016) 2881–2891, doi:10.1039/c6ee01871h.
N. Prasad, B. Karthikeyan, Appl. Phys. A Mater. 124 (6) (2018) 421, doi:10.1007/s00339-018-1802-3.
Y. Zhu, J. Yin, A.H. Emwas, O.F. Mohammed, H.N. Alshareef, Adv. Funct. Mater. 31 (50) (2021) 2107523, doi:10.1002/adfm.202107523.
C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang, C. Wang, Y. Lu, L. Yin, Energy Environ. Sci. 11 (11) (2018) 3201–3211, doi:10.1039/c8ee01046c.
C. Yan, Y. Zhu, Y. Li, Z. Fang, L. Peng, X. Zhou, G. Chen, G. Yu, Adv. Funct. Mater. 28 (7) (2018) 1705951, doi:10.1002/adfm.201705951.
Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu, Z. Guo, Angew. Chem. Int. Ed. 55 (10) (2016) 3408–3413, doi:10.1002/anie.201510978.
T. Qin, D. Wang, X. Zhang, Y. Wang, N.E. Drewett, W. Zhang, T. Dong, T. Li, Z. Wang, T. Deng, Z. Pan, N. Yue, R. Yang, K. Huang, S. Feng, R. Huang, W. Zheng, Energy Storage Mater. 36 (2021) 376–386, doi:10.1016/j.ensm.2021.01.013.
H. Shan, J. Qin, Y. Ding, H.M.K. Sari, X. Song, W. Liu, Y. Hao, J. Wang, C. Xie, J. Zhang, X. Li, Adv. Mater. 33 (37) (2021) 2102471, doi:10.1002/adma.202102471.
K. Biswas, L.-.D. Zhao, M.G. Kanatzidis, Adv. Energy Mater. 2 (6) (2012) 634–638, doi:10.1002/aenm.201100775.
Z.H. Ge, B.P. Zhang, P.P. Shang, J.F. Li, J. Mater. Chem. 21 (25) (2011) 9194–9200, doi:10.1039/c1jm11069a.
G. Kresse, J. Hafner, Phys. Rev. B 47 (1) (1993) 558–561, doi:10.1103/PhysRevB.47.558.
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (18) (1996) 3865–3868, doi:10.1103/PhysRevLett.77.3865.
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, K. Burke, Phys. Rev. Lett. 100 (13) (2008) 136406, doi:10.1103/PhysRevLett.100.136406.
P.E. Blöchl, Phys. Rev. B 50 (24) (1994) 17953–17979, doi:10.1103/PhysRevB.50.17953.
B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59 (1999) 7413, doi:10.1103/PhysRevB.59.7413.
R. Asahi, W. Mannstadt, A.J. Freeman, Phys. Rev. B 59 (11) (1999) 7486–7492, doi:10.1103/PhysRevB.59.7486.
J. Iniguez, D. Vanderbilt, L. Bellaiche, Phys. Rev. B 67 (2003) 224107, doi:10.1103/PhysRevB.67.224107.
G.H. Zhong, J.L. Wang, Z. Zeng, J. Phys. Conf. Ser. 29 (2006) 106–109, doi:10.1088/1742-6596/29/1/020.
T. Qin, X. Zhang, D. Wang, T. Deng, H. Wang, X. Liu, X. Shi, Z. Li, H. Chen, X. Meng, W. Zhang, W. Zheng, ACS Appl. Mater. Interfaces 11 (2) (2019) 2103–2111, doi:10.1021/acsami.8b19575.
X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Adv. Funct. Mater. 26 (23) (2016) 4067–4077, doi:10.1002/adfm.201505509.
D. Wu, G. Huo, W. Chen, X.Z. Fu, J.L. Luo, Appl. Catal. B Environ. 271 (2020) 118957, doi:10.1016/j.apcatb.2020.118957.
J. Yi, K. Liao, C. Zhang, T. Zhang, F. Li, H. Zhou, ACS Appl. Mater. Interfaces 7 (20) (2015) 10823–10827, doi:10.1021/acsami.5b01727.
J. Mei, T. Liao, G.A. Ayoko, Z. Sun, ACS Appl. Mater. Interfaces 11 (31) (2019) 28205–28212, doi:10.1021/acsami.9b09882.
H. Ticha, M. Kincl, L. Tichy, Mater. Chem. Phys. 138 (2–3) (2013) 633–639, doi:10.1016/j.matchemphys.2012.12.032.
F. Chang, B. Lei, C. Yang, J. Wang, X. Hu, Chem. Eng. J. 413 (2021) 127443, doi:10.1016/j.cej.2020.127443.
P. Veerakumar, G. Jaysiva, S.M. Chen, K.C. Lin, ACS Appl. Mater. Interfaces 14 (4) (2022) 5908–5920, doi:10.1021/acsami.1c16723.
Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef, W. Li, A.P. O'Mullane, J. Yang, W. Luo, K. Ostrikov, Y. Gu, Z. Sun, Nano Micro Lett. 4 (1) (2022) 90 1, doi:10.1007/s40820-022-00832-6.
R. Liu, L. Ma, G. Niu, X. Li, E. Li, Y. Bai, G. Yuan, Adv. Funct. Mater. 27 (29) (2017) 1701635, doi:10.1002/adfm.201701635.
H. Zheng, Y. Zeng, H. Zhang, X. Zhao, M. Chen, J. Liu, X. Lu, J. Power Sources. 433 (2019) 228730, doi:10.1016/j.jpowsour.2019.05.090.
M. Xu, Y. Niu, X. Teng, S. Gong, L. Ji, Z. Chen, J. Energy Chem. 65 (2022) 605–615, doi:10.1016/j.jechem.2021.06.028.
J. Li, Z. Li, X. Liu, C. Li, Y. Zheng, K.W.K. Yeung, Z. Cui, Y. Liang, S. Zhu, W. Hu, Y. Qi, T. Zhang, X. Wang, S. Wu, Nat. Commun. 12 (1) (2021) 1224, doi:10.1038/s41467-021-21435-6.
L. Cao, X. Liang, X. Ou, X. Yang, Y. Li, C. Yang, Z. Lin, M. Liu, Adv. Funct. Mater. 30 (16) (2020) 1910732, doi:10.1002/adfm.201910732.
Y. Sang, X. Cao, G. Dai, L. Wang, Y. Peng, B. Geng, J. Hazard. Mater. 381 (2020) 120942, doi:10.1016/j.jhazmat.2019.120942.
W. Luo, F. Li, Q. Li, X. Wang, W. Yang, L. Zhou, L. Mai, ACS Appl. Mater. Interfaces 10 (8) (2018) 7201–7207, doi:10.1021/acsami.8b01613.
P.F. Sui, C. Xu, M.N. Zhu, S. Liu, Q. Liu, J.L. Luo, Small 18 (1) (2022) 2105682, doi:10.1002/smll.202105682.
X. Yang, P. Deng, D. Liu, S. Zhao, D. Li, H. Wu, Y. Ma, B.Y. Xia, M. Li, C. Xiao, S. Ding, J. Mater. Chem A 8 (5) (2020) 2472–2480, doi:10.1039/c9ta11363k.
S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Angew. Chem. Int. Ed. 58 (39) (2019) 13828–13833, doi:10.1002/anie.201907674.
W. Wang, Y. Xiao, X. Li, Q. Cheng, G. Wang, Chem. Eng. J. 371 (2019) 327–336, doi:10.1016/j.cej.2019.04.048.
Y.L. Liu, M.Q. Li, G.G. Wang, L.Y. Dang, F. Li, M.E. Pam, H.Y. Zhang, J.C. Han, H.Y. Yang, Energy Environ. Mater. 4 (3) (2020) 465–473, doi:10.1002/eem2.12130.
X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu, B. Wang, C. Sun, Y. Jiang, Q. Zhang, Y. Yu, Adv. Funct. Mater. 31 (22) (2021) 2011264, doi:10.1002/adfm.202011264.
Q. Li, S. Jing, Z. Yong, Q. Zhang, C. Liu, K. Zhu, Y. Feng, W. Gong, Y. Yao, Energy Storage Mater. 42 (2021) 815–825, doi:10.1016/j.ensm.2021.08.032.
T. Qin, W. Zhang, Y. Ma, W. Zhang, T. Dong, X. Chu, T. Li, Z. Wang, N. Yue, H. Liu, L. Zheng, X. Fan, X. Lang, Q. Jiang, W. Zheng, Energy Storage Mater. 45 (2022) 33–39, doi:10.1016/j.ensm.2021.11.032.
T. Dong, W. Yi, T. Deng, T. Qin, X. Chu, H. Yang, L. Zheng, S.J. Yoo, J.G. Kim, Z. Wang, Y. Wang, W. Zhang, W. Zheng, Energy Environ. Mater. (2022).
G. Zan, T. Wu, P. Hu, Y. Zhou, S. Zhao, S. Xu, J. Chen, Y. Cui, Q. Wu, Energy Storage Mater 28 (2020) 82–90, doi:10.1016/j.ensm.2020.02.027.
T. Tang, Z. Yin, J. Chen, S. Zhang, W. Sheng, W. Wei, Y. Xiao, Q. Shi, S. Cao, Chem. Eng. J. 417 (2021) 128058, doi:10.1016/j.cej.2020.128058.
H. Zheng, H. Li, M. Yu, M. Zhang, Y. Tong, F. Cheng, X. Lu, J. Mater. Chem. A 5 (48) (2017) 25539–25544, doi:10.1039/c7ta08451j.
H. Cheng, J. Wang, Y. Yang, H. Shi, J. Shi, X. Jiao, P. Han, X. Yao, W. Chen, X. Wei, P.K. Chu, X. Zhang, Small 18 (26) (2022) 2200857, doi:10.1002/smll.202200857.
C. Li, Y. Liu, Z. Zhuo, H. Ju, D. Li, Y. Guo, X. Wu, H. Li, T. Zhai, Adv. Funct. Mater. 8 (27) (2018) 1801775, doi:10.1002/aenm.201801775.
Y. Zhang, Z. Jin, D. Liu, Z. Tan, B.B. Mamba, A.T. Kuvarega, J. Gui, ACS Appl. Mater. Interfaces 5 (4) (2022) 5448–5458, doi:10.1021/acsanm.2c00446.