PDF (42.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Full Length Article | Open Access

Interfacial microstructure evolution for coordinated deformation of Mg/Al composite plates by asymmetrical rolling with differential temperature rolls

Junyi LeiaLifeng Maa()Zhihui CaiaWeitao Jiaa()Yuan YuanbHucheng PancHongbo Xiec
College of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
Show Author Information

Abstract

In this work, Mg/Al composite plates with different thickness ratios were prepared by the asymmetrical rolling process with differential temperature rolls and isothermal symmetrical rolling. Microstructural evolution and mechanical properties of matrix and composite materials with different thicknesses were analyzed. Influence of thickness ratios on the coordinated deformability of heterogeneous metals and interface toughness under the action of temperature gradient and shear force was investigated. Results show that the relative deformation rates of matrix and composite materials converge gradually under the influence of work hardening of Mg/Al layer. The Mg layer is mainly DRXed grains and texture intensity gradually weakens with increasing thickness ratio. The Al layer is mostly dominated by subgrains and deformed grains, which have a strong correlation with thickness ratio. Strength and plasticity of composites first increase and then decrease with increasing thickness ratio. Fracture of composite plate occurs in intermetallic compounds (IMCs). Thickness of IMCs has a strong positive correlation with thickness ratio. When the thickness ratio of AZ31B/Al6061 for 5, the relative thickness of IMCs is the largest and the relative bonding strength is the smallest. When the thickness ratio of AZ31B/Al6061 for 3, there is no element aggregation in IMCs, and the comprehensive mechanical properties of composite plate are comparatively better.

References

[1]

Huang Meng, Xu Chao, Fan Guohua, et al., Acta Mater. 153 (2018) 235–249, doi:10.1016/j.actamat.2018.05.005.

[2]

Acarer Mustafa, Demir Bilge, Dikici Burak, Salur Emin, J. Magnesium Alloys (2021), doi:10.1016/j.jma.2021.08.009.

[3]

S. Jiang, Peng R. Lin, Z Hegedűs, et al., Acta Mater. 205 (2021), doi:10.1016/j.actamat.2020.116546.

[4]

Tang Jianwei, Chen Liang, Zhao Guoqun, Zhang Cunsheng, Sun Lu, J. Magnesium Alloys 8 (2020) 654–666, doi:10.1016/j.jma.2020.02.016.

[5]

Feng Bo, Xin Yunchang, Guo Feilong, et al., Acta Mater. 120 (2016) 379–390, doi:10.1016/j.actamat.2016.08.079.

[6]

Li Guangyu, Jiang Wenming, Guan Feng, et al., J. Magnesium Alloys 10 (2022) 1075–1085, doi:10.1016/j.jma.2021.02.002.

[7]

Milan Ardeljan, Irene J Beyerlein, Marko Knezevic, Int. J. Plast. 99 (2017) 81–101, doi:10.1016/j.ijplas.2017.09.002.

[8]

Xu Tiancai, Yang Yan, Peng Xiaodong, Song Jiangfeng, Pan Fusheng, J. Magnesium Alloys 7 (2019) 536–544, doi:10.1016/j.jma.2019.08.001.

[9]

Rezaei Mohammad Reza, Toroghinejad Mohammad Reza, Ashrafizadeh Fakhreddin, Mater. Sci. Eng.: A 529 (2011) 442–446, doi:10.1016/j.msea.2011.09.057.

[10]

Chai Yanfu, Song Yan, Jiang Bin, et al., J. Magnesium Alloys 7 (2019) 545–554, doi:10.1016/j.jma.2019.09.007.

[11]

Guan Feng, Jiang Wenming, Li Guangyu, et al., J. Magnesium Alloys (2021), doi:10.1016/j.jma.2021.11.023.

[12]

Zhao Zilong, Gao Qiang, Hou Junfeng, Sun Ziwei, Chen Fei, J. Magnesium Alloys 4 (2016) 242–248, doi:10.1016/j.jma.2016.07.003.

[13]

H.S. Liu, B. Zhang, G.P. Zhang, J. Mater. Sci. Technol. 27 (2011) 15–21, doi:10.1016/s1005-0302(11)60019-4.

[14]

Liu Tingting, Song Bo, Huang Guangsheng, et al., J. Magnesium Alloys 10 (2022) 2062–2093, doi:10.1016/j.jma.2022.08.001.

[15]

Wang Tao, Wang Yuelin, Bian Liping, Huang Qingxue, Mater. Sci. Eng.: A 765 (2019), doi:10.1016/j.msea.2019.138318.

[16]

Nie Huihui, Liang Wei, Chen Hongsheng, et al., Mater. Sci. Eng.: A 732 (2018) 6–13, doi:10.1016/j.msea.2018.06.065.

[17]

K.S. Lee, Y.S. Lee, Y.N. Kwon, Mater. Sci. Eng.: A 606 (2014) 205–213, doi:10.1016/j.msea.2014.03.082.

[18]

Zhang Jing, Xi Guoqiang, Wan Xin, Fang Chao, Acta Mater. 133 (2017) 208–216, doi:10.1016/j.actamat.2017.05.034.

[19]

Song Jiangfeng, Chen Jing, Xiong Xiaoming, et al., J. Magnesium Alloys 10 (2022) 863–898, doi:10.1016/j.jma.2022.04.001.

[20]

J.H. Bae, A.K. Prasada Rao, K.H. Kim, J. Kim Nack, Scr. Mater. 64 (2011) 836–839, doi:10.1016/j.scriptamat.2011.01.013.

[21]

Ren Yupeng, Tariq Naeem ul Haq, Liu Hanhui, et al., Mater. Sci. Eng.: A 849 (2022), doi:10.1016/j.msea.2022.143515.

[22]

Li Xiaobing, Zu Guoyin, Wang Ping, Mater. Sci. Eng.: A 562 (2013) 96–100, doi:10.1016/j.msea.2012.11.028.

[23]

Cho Jae-Hyung, Kim Hyoung-Wook, Kang Suk-Bong, Han Tong-Seok, Acta Mater. 59 (2011) 5638–5651, doi:10.1016/j.actamat.2011.05.039.

[24]

Magalhães Danielle Cristina Camilo, Sordi Vitor Luiz, Kliauga Andrea Madeira, Mater. Charact. 162 (2020), doi:10.1016/j.matchar.2020.110226.

[25]

Ucuncuoglu Selda, Ekerim Ahmet, Secgin Gizem Oktay, Duygulu Ozgur, J. Magnesium Alloys 2 (2014) 92–98, doi:10.1016/j.jma.2014.02.001.

[26]

Li Saiyi, Qin Nan, Liu Jie, Zhang Xinming, Mater. Des. 90 (2016) 1010–1017, doi:10.1016/j.matdes.2015.11.054.

[27]

I. Ulacia, N.V. Dudamell, F. Gálvez, et al., Acta Mater. 58 (2010) 2988–2998, doi:10.1016/j.actamat.2010.01.029.

[28]

Chen Shuai-Feng, Song Hong-Wu, Zhang Shi-Hong, et al., Scr. Mater. 167 (2019) 51–55, doi:10.1016/j.scriptamat.2019.03.026.

[29]

Lu Rihuan, Liu Yutong, Yan Meng, et al., J. Mater. Process. Technol. 297 (2021), doi:10.1016/j.jmatprotec.2021.117246.

[30]

X.P. Zhang, T.H. Yang, S. Castagne, J.T Wang, Mater. Sci. Eng.: A 528 (2011) 1954–1960, doi:10.1016/j.msea.2010.10.105.

[31]

Lei Junyi, Ma Lifeng, Cai Zhihui, et al., Mater. Sci. Eng.: A 869 (2023), doi:10.1016/j.msea.2023.144764.

[32]

Guo Lili, Fujita Fumio, J. Magnesium Alloys 3 (2015) 95–105, doi:10.1016/j.jma.2015.04.004.

[33]

Zheng Ruixiao, Du Jun-Ping, Gao Si, et al., Acta Mater. 198 (2020) 35–46, doi:10.1016/j.actamat.2020.07.055.

[34]

Shen Jingyuan, Zhang Lingyu, Hu Lianxi, et al., Mater. Sci. Eng.: A 823 (2021), doi:10.1016/j.msea.2021.141745.

[35]

M.G. Jiang, C. Xu, H. Yan, et al., Acta Mater. 157 (2018) 53–71, doi:10.1016/j.actamat.2018.07.014.

[36]

Nie Huihui, Liang Wei, Chen Hongsheng, et al., J. Alloys Compd. 781 (2019) 696–701, doi:10.1016/j.jallcom.2018.11.366.

[37]

Chen Qinghua, Chen Ruinan, Su Jian, et al., J. Magnesium Alloys 10 (2022) 2384–2397, doi:10.1016/j.jma.2022.09.001.

[38]

Hu Hongjun, Liu Yang, Zhang Dingfei, Ou Zhongwen, J. Alloys Compd. 695 (2017) 1088–1095, doi:10.1016/j.jallcom.2016.10.234.

[39]

Huo Peng Da, Li Feng, Wang Ye, et al., Mater. Des. 219 (2022), doi:10.1016/j.matdes.2022.110696.

[40]

Hua Lin, Hu Xuan, Han Xinghui, Mater. Des. 196 (2020), doi:10.1016/j.matdes.2020.109192.

[41]

Zhang Kai, Zheng Jing-Hua, Huang Yan, Pruncu Catalin, Jiang Jun, Mater. Des. 193 (2020), doi:10.1016/j.matdes.2020.108793.

[42]

Chen Xiang, Zhang Baoxuan, Zou Qin, et al., J. Mater. Sci. Technol. 100 (2022) 193–205, doi:10.1016/j.jmst.2021.05.030.

[43]

Zhao Dexin, Ma Xiaolong, Srivastava Abhinav, et al., Acta Mater. 207 (2021), doi:10.1016/j.actamat.2021.116691.

[44]

R. Mola, S. Mroz, P. Szota, Arch. Civil Mech. Eng. 18 (2018) 1401–1409, doi:10.1016/j.acme.2018.05.003.

[45]

A. Wierzba, S. Mróz, P. Szota, A. Stefanik, R. Mola, Arch. Metall. Mater. 60 (2015) 2821–2826, doi:10.1515/amm-2015-0450.

[46]

K. Spencer, M.X Zhang, Scr. Mater. 61 (2009) 44–47, doi:10.1016/j.scriptamat.2009.03.002.

[47]

M. Pahlavani, D. Rahmatabadi, M. Ahmadi, R. Hashemi, Mater. Sci. Eng.: A 824 (2021), doi:10.1016/j.msea.2021.141851.

[48]

Yu Zhaoji, Wang Tao, Liu Chao, Ma Yunzhu, Liu Wensheng, Mater. Sci. Eng.: A 848 (2022), doi:10.1016/j.msea.2022.143410.

[49]

H. Wang, B. Clausen, L. Capolungo, et al., Int. J. Plast. 79 (2016) 275–292, doi:10.1016/j.ijplas.2015.07.004.

[50]

Li Guangyu, Jiang Wenming, Guan Feng, et al., J. Magnesium Alloys (2022), doi:10.1016/j.jma.2022.08.010.

[51]

Li Guangyu, Yang Wenchao, Jiang Wenming, et al., J. Mater. Process. Technol. 265 (2019) 112–121, doi:10.1016/j.jmatprotec.2018.10.010.

Journal of Magnesium and Alloys
Pages 4244-4258
Cite this article:
Lei J, Ma L, Cai Z, et al. Interfacial microstructure evolution for coordinated deformation of Mg/Al composite plates by asymmetrical rolling with differential temperature rolls. Journal of Magnesium and Alloys, 2024, 12(10): 4244-4258. https://doi.org/10.1016/j.jma.2023.04.012
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return