MgH2, albeit with slow desorption kinetics, has been extensively studied as one of the most ideal solid hydrogen storage materials. Adding such catalyst as Ni can improve the desorption kinetics of MgH2, whereas the catalytic role has been attributed to different substances such as Ni, Mg2Ni, Mg2NiH0.3, and Mg2NiH4. In the present study, Ni nanoparticles (Ni-NPs) supported on mesoporous carbon (Ni@C) have been synthesized to improve the hydrogen desorption kinetics of MgH2. The utilization of Ni@C largely decreases the dehydrogenation activation energy from 176.9 to 79.3 kJ mol−1 and the peak temperature of dehydrogenation from 375.5 to 235 °C. The mechanism of Ni catalyst is well examined by advanced aberration-corrected environmental transmission electron microscopy and/or x-ray diffraction. During the first dehydrogenation, detailed microstructural studies reveal that the decomposition of MgH2 is initially triggered by the Ni-NPs, which is the rate-limiting step. Subsequently, the generated Mg reacts rapidly with Ni-NPs to form Mg2Ni, which further promotes the dehydrogenation of residual MgH2. In the following dehydrogenation cycle, Mg2NiH4 can rapidly decompose into Mg2Ni, which continuously promotes the decomposition of MgH2. Our study not only elucidates the mechanism of Ni catalyst but also helps design and assemble catalysts with improved dehydriding kinetics of MgH2.
B. Sakintunaa, F. Lamari-Darkrimb, M. Hirscherc, Int. J. Hydrogen Energy 32 (2007) 1121–1140.
Z.Q. Lan, X.B. Wen, L. Zeng, Z.Q. Luo, H.R. Liang, et al., Chem. Eng. J. 446 (2022) 137261.
I.P. Jain, Int. J. Hydrogen Energy 34 (2009) 7368–7378.
L.Z. Ouyang, K. Chen, J. Jiang, X.S. Yang, M. Zhu, J. Alloy. Compd. 829 (2020) 154597.
M. Zhu, Y.S. Lu, L.Z. Ouyang, H. Wang, Materials 6 (2013) 4654–4674.
M. Hirscher, V.A. Yartys, M. Baricco, J. Bellosta von Colbe, D. Blanchard, et al., J. Alloy. Compd. 827 (2020) 153548.
J.B.v. Colbe, J.-R. Ares, J. Barale, M. Baricco, C. Buckley, et al., Int. J. Hydrogen Energy 44 (2019) 7780–7808.
Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, et al., J. Magnes. Alloys 7 (2019) 58–71.
I.P. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy 35 (2010) 5133–5144.
J. Huot, G. Liang, S. Boily, A. Neste, R. Schulz, J. Alloy. Compd. 293-295 (1999) 495–500.
N. Patelli, M. Calizzi, A. Migliori, V. Morandi, L. Pasquini, J. Phys. Chem. C 121 (2017) 11166–11177.
X.Z. Xiao, C.C. Xu, J. Shao, L.T. Zhang, T. Qin, et al., J. Mater. Chem. A 3 (2015) 5517–5524.
C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1-184.
P.E. Jongh, M. Allendorf, J.J. Vajo, C. Zlotea, MRS Bull. 38 (2013) 488–494.
J. Cui, H. Wang, J.W. Liu, L.Z. Ouyang, Q.A. Zhang, et al., J. Mater. Chem. A 1 (2013) 5603–5611.
J. Cui, J.W. Liu, H. Wang, L.Z. Ouyang, D.L. Sun, et al., J. Mater. Chem. A 2 (2014) 9645–9655.
P. Li, Q. Wan, Z.L. Li, F.Q. Zhai, Y.L. Li, et al., J. Power Sources 239 (2013) 201–206.
A. Valentoni, G. Mulas, S. Enzo, S. Garroni, Phys. Chem. Chem. Phys. 20 (2018) 4100–4108.
C.L. Lu, H.Z. Liu, L. Xu, H. Luo, S.X. He, et al., J. Magnes. Alloys 10 (2022) 1051–1065.
X.Q. Zeng, L.F. Cheng, J.X. Zou, W.J. Ding, H.Y. Tian, et al., J. Appl. Phys. 111 (2012) 093720.
Y.N. Liu, J.X. Zou, X.Q. Zeng, X.M. Wu, D.J. Li, et al., J. Phys. Chem. C 118 (2014) 18401–18411.
L. Zeng, Z.Q. Lan, B.B. Li, H.R. Liang, X.B. Wen, et al., J. Magnes. Alloys 10 (2022) 3628–3640.
J. Chen, G.L. Xia, Z.P. Guo, Z.G. Huang, H.K. Liu, et al., J. Mater. Chem. A 3 (2015) 15843–15848.
H.Y. Shao, G.B. Xin, J. Zheng, X.G. Li, E. Akiba, Nano Energy 1 (2012) 590–601.
Y.O. Ma, T.F. Zhang, W.J. He, Q. Luo, Z.W. Li, et al., Int. J. Hydrogen Energy 45 (2020) 12048–12070.
W.J. Yuan, M.K. Ge, K. Wang, X.G. Hou, N. Liu, et al., Nanoscale 11 (2019) 10198–10202.
Y.Q. Qiao, C.C. Du, J.J. Tang, P. Jia, X.Y. Zhang, et al., Nano Energy 90 (2021) 106588.
G. Chen, Y. Zhang, J. Chen, X.L. Guo, Y.F. Zhu, et al., Nanotechnology 29 (2018) 265705.
C.W. Duan, Y.T. Tian, X. Wang, M.H. Wu, D. Fu, et al., Renew. Energ. 187 (2022) 417–427.
C.W. Duan, Z.H. Su, Y.T. Tian, D. Fu, Y. Zhang, et al., Chem. Eng. J. 441 (2022) 136059.
A. Gupta, M. Faisal, S. Shervani, K. Balani, A. Subramaniam, Int. J. Hydrogen Energy 45 (2020) 11632–11640.
L. Dan, H. Wang, J.W. Liu, L. Ouyang, M. Zhu, ACS Appl. Energy Mater. 5 (2022) 4976–4984.
P.Y. Yao, Y. Jiang, Y. Liu, C.Z. Wu, K.C. Chou, et al., J. Magnes. Alloys 8 (2020) 461–471.
L.S. Birks, H. Friedman, J. Appl. Phys. 17 (1946) 687–692.
Y.D. Xie, D. Kocaefe, C.Y. Chen, Y. Kocaefe, J. Nanomaterials 2016 (2016) 1-10.
Y.C. Yang, Y.W. Yang, Z.X. Pei, K.H. Wu, C.H. Tan, et al., Matter 3 (2020) 1442–1476.
Z.L. Ma, J.G. Zhang, Y.F. Zhu, H.J. Lin, Y.N. Liu, et al., ACS Appl. Energy Mater. 1 (2018) 1158–1165.
T.P. Huang, X. Huang, C.Z. Hu, J. Wang, H.B. Liu, et al., Chem. Eng. J. 421 (2021) 127851.
C.H. An, G. Liu, L. Li, Y. Wang, C.C. Chen, et al., Nanoscale 6 (2014) 3223–3230.
D.D. Peng, Z.M. Ding, Y.K. Fu, Y. Wang, J. Bi, et al., RSC Adv. 8 (2018) 28787–28796.
Y. Wang, Z.M. Ding, X.J. Li, S.Q. Ren, S.H. Zhou, et al., Dalton. Trans. 49 (2020) 3495–3502.
X.J. Li, Y.K. Fu, Y.C. Xie, L. Cong, H. Yu, et al., Int. J. Hydrogen Energy 46 (2021) 33186–33196.
Z.W. Ma, J.X. Zou, C.Z. Hu, W. Zhu, D. Khan, et al., Int. J. Hydrogen Energy 44 (2019) 29235–29248.
Q.H. Hou, X.L. Yang, J.Q. Zhang, W.J. Yang, E. Lv, J. Alloy. Compd. 899 (2022) 163314.
H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.
S.M. Zhou, D. Wei, H.Y. Wan, X. Yang, Y.J. Dai, et al., Inorg. Chem. Front. 9 (2022) 5495–5506.
N. Sazelee, M.F. Md Din, M. Ismail, S.U. Rather, H.S. Bamufleh, et al., Materials 16 (2023) 2449.
N. Sazelee, M.F. Md Din, M. Ismail, Materials 16 (2023) 2176.
M. Ismail, Int. J. Hydrogen Energy 46 (2021) 8621–8628.
H.F. Fu, J. Hu, Y.F. Lu, X.M. Li, Y.A. Chen, et al., ACS Appl. Mater. Interfaces 14 (2022) 33161–33172.
N.A. Sazelee, N.H. Idris, M.F. Md Din, M. S.Yahya, N.A. Ali, et al., Results Phys. 16 (2020) 102844.
H.Z. Liu, C.L. Lu, X.C. Wang, L.T. Xu, X.T. Huang, et al., ACS Appl. Mater. Interfaces 13 (2021) 13235–13247.
Z.R. Yuan, S.H. Li, K. Wang, N. Xu, W.P. Sun, et al., Chem. Eng. J. 435 (2022) 135050.
L.Z. Ouyang, S.Y. Ye, H.W. Dong, M. Zhu, Appl. Phys. Lett. 90 (2007) 021917.
W. Jander, Z. anorg allg Chem. 163 (1927) 1-30 (in German).
M. Avrami, J. Chem. Phys. 9 (1941) 177–184.
J.W. Christian, Theory of Transformation in Metals and Alloys, an Advanced Textbook in Physical Metallurgy, Pergamon, Oxford, 1975.
G. Barkhordarian, T. Klassen, R. Bormann, J. Alloy. Compd. 407 (2006) 249–255.
F.J. Castro, G. Meyer, J. Alloy. Compd. 330-332 (2002) 59–63.
G. Liu, Y.J. Wang, F.Y. Qiu, L. Li, L.F. Jiao, et al., J. Mater. Chem. 22 (2012) 22542–22549.
S. Wang, M.X. Gao, Z.H. Yao, K.C. Xian, M.H. Wu, et al., J. Magnes. Alloys 10 (2022) 3354–3366.