PDF (25.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Full Length Article | Open Access

Catalytic mechanisms of nickel nanoparticles for the improved dehydriding kinetics of magnesium hydride

Shuaijun DingaYuqing Qiaoa,b()Xuecheng Caic()Congcong DuaYixuan WenaXun ShenaLidong XuaShuang GuobWeimin GaodTongde Shena()
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Deakin University, Geelong, Institute for Frontier Materials, Locked Bag 20000, VIC, 3220, Australia
Show Author Information

Abstract

MgH2, albeit with slow desorption kinetics, has been extensively studied as one of the most ideal solid hydrogen storage materials. Adding such catalyst as Ni can improve the desorption kinetics of MgH2, whereas the catalytic role has been attributed to different substances such as Ni, Mg2Ni, Mg2NiH0.3, and Mg2NiH4. In the present study, Ni nanoparticles (Ni-NPs) supported on mesoporous carbon (Ni@C) have been synthesized to improve the hydrogen desorption kinetics of MgH2. The utilization of Ni@C largely decreases the dehydrogenation activation energy from 176.9 to 79.3 kJ mol−1 and the peak temperature of dehydrogenation from 375.5 to 235 °C. The mechanism of Ni catalyst is well examined by advanced aberration-corrected environmental transmission electron microscopy and/or x-ray diffraction. During the first dehydrogenation, detailed microstructural studies reveal that the decomposition of MgH2 is initially triggered by the Ni-NPs, which is the rate-limiting step. Subsequently, the generated Mg reacts rapidly with Ni-NPs to form Mg2Ni, which further promotes the dehydrogenation of residual MgH2. In the following dehydrogenation cycle, Mg2NiH4 can rapidly decompose into Mg2Ni, which continuously promotes the decomposition of MgH2. Our study not only elucidates the mechanism of Ni catalyst but also helps design and assemble catalysts with improved dehydriding kinetics of MgH2.

References

[1]

B. Sakintunaa, F. Lamari-Darkrimb, M. Hirscherc, Int. J. Hydrogen Energy 32 (2007) 1121–1140.

[2]

Z.Q. Lan, X.B. Wen, L. Zeng, Z.Q. Luo, H.R. Liang, et al., Chem. Eng. J. 446 (2022) 137261.

[3]

I.P. Jain, Int. J. Hydrogen Energy 34 (2009) 7368–7378.

[4]

L.Z. Ouyang, K. Chen, J. Jiang, X.S. Yang, M. Zhu, J. Alloy. Compd. 829 (2020) 154597.

[5]

M. Zhu, Y.S. Lu, L.Z. Ouyang, H. Wang, Materials 6 (2013) 4654–4674.

[6]

M. Hirscher, V.A. Yartys, M. Baricco, J. Bellosta von Colbe, D. Blanchard, et al., J. Alloy. Compd. 827 (2020) 153548.

[7]

J.B.v. Colbe, J.-R. Ares, J. Barale, M. Baricco, C. Buckley, et al., Int. J. Hydrogen Energy 44 (2019) 7780–7808.

[8]

Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, et al., J. Magnes. Alloys 7 (2019) 58–71.

[9]

I.P. Jain, C. Lal, A. Jain, Int. J. Hydrogen Energy 35 (2010) 5133–5144.

[10]

J. Huot, G. Liang, S. Boily, A. Neste, R. Schulz, J. Alloy. Compd. 293-295 (1999) 495–500.

[11]

N. Patelli, M. Calizzi, A. Migliori, V. Morandi, L. Pasquini, J. Phys. Chem. C 121 (2017) 11166–11177.

[12]

X.Z. Xiao, C.C. Xu, J. Shao, L.T. Zhang, T. Qin, et al., J. Mater. Chem. A 3 (2015) 5517–5524.

[13]

C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1-184.

[14]

P.E. Jongh, M. Allendorf, J.J. Vajo, C. Zlotea, MRS Bull. 38 (2013) 488–494.

[15]

J. Cui, H. Wang, J.W. Liu, L.Z. Ouyang, Q.A. Zhang, et al., J. Mater. Chem. A 1 (2013) 5603–5611.

[16]

J. Cui, J.W. Liu, H. Wang, L.Z. Ouyang, D.L. Sun, et al., J. Mater. Chem. A 2 (2014) 9645–9655.

[17]

P. Li, Q. Wan, Z.L. Li, F.Q. Zhai, Y.L. Li, et al., J. Power Sources 239 (2013) 201–206.

[18]

A. Valentoni, G. Mulas, S. Enzo, S. Garroni, Phys. Chem. Chem. Phys. 20 (2018) 4100–4108.

[19]

C.L. Lu, H.Z. Liu, L. Xu, H. Luo, S.X. He, et al., J. Magnes. Alloys 10 (2022) 1051–1065.

[20]
Z.Q. Lan, H.R. Liang, X.B. Wen, J.Y. Hu, H. Ning, et al., J. Magnes. Alloys, 2022, in press.
[21]

X.Q. Zeng, L.F. Cheng, J.X. Zou, W.J. Ding, H.Y. Tian, et al., J. Appl. Phys. 111 (2012) 093720.

[22]

Y.N. Liu, J.X. Zou, X.Q. Zeng, X.M. Wu, D.J. Li, et al., J. Phys. Chem. C 118 (2014) 18401–18411.

[23]

L. Zeng, Z.Q. Lan, B.B. Li, H.R. Liang, X.B. Wen, et al., J. Magnes. Alloys 10 (2022) 3628–3640.

[24]

J. Chen, G.L. Xia, Z.P. Guo, Z.G. Huang, H.K. Liu, et al., J. Mater. Chem. A 3 (2015) 15843–15848.

[25]
Y.K. Fu, L. Zhang, Y. Li, S.Y. Guo, H. Yu, et al., J. Magnes. Alloys, 2022, in press.
[26]

H.Y. Shao, G.B. Xin, J. Zheng, X.G. Li, E. Akiba, Nano Energy 1 (2012) 590–601.

[27]

Y.O. Ma, T.F. Zhang, W.J. He, Q. Luo, Z.W. Li, et al., Int. J. Hydrogen Energy 45 (2020) 12048–12070.

[28]

W.J. Yuan, M.K. Ge, K. Wang, X.G. Hou, N. Liu, et al., Nanoscale 11 (2019) 10198–10202.

[29]

Y.Q. Qiao, C.C. Du, J.J. Tang, P. Jia, X.Y. Zhang, et al., Nano Energy 90 (2021) 106588.

[30]

G. Chen, Y. Zhang, J. Chen, X.L. Guo, Y.F. Zhu, et al., Nanotechnology 29 (2018) 265705.

[31]

C.W. Duan, Y.T. Tian, X. Wang, M.H. Wu, D. Fu, et al., Renew. Energ. 187 (2022) 417–427.

[32]

C.W. Duan, Z.H. Su, Y.T. Tian, D. Fu, Y. Zhang, et al., Chem. Eng. J. 441 (2022) 136059.

[33]

A. Gupta, M. Faisal, S. Shervani, K. Balani, A. Subramaniam, Int. J. Hydrogen Energy 45 (2020) 11632–11640.

[34]

L. Dan, H. Wang, J.W. Liu, L. Ouyang, M. Zhu, ACS Appl. Energy Mater. 5 (2022) 4976–4984.

[35]

P.Y. Yao, Y. Jiang, Y. Liu, C.Z. Wu, K.C. Chou, et al., J. Magnes. Alloys 8 (2020) 461–471.

[36]

L.S. Birks, H. Friedman, J. Appl. Phys. 17 (1946) 687–692.

[37]

Y.D. Xie, D. Kocaefe, C.Y. Chen, Y. Kocaefe, J. Nanomaterials 2016 (2016) 1-10.

[38]

Y.C. Yang, Y.W. Yang, Z.X. Pei, K.H. Wu, C.H. Tan, et al., Matter 3 (2020) 1442–1476.

[39]

Z.L. Ma, J.G. Zhang, Y.F. Zhu, H.J. Lin, Y.N. Liu, et al., ACS Appl. Energy Mater. 1 (2018) 1158–1165.

[40]

T.P. Huang, X. Huang, C.Z. Hu, J. Wang, H.B. Liu, et al., Chem. Eng. J. 421 (2021) 127851.

[41]

C.H. An, G. Liu, L. Li, Y. Wang, C.C. Chen, et al., Nanoscale 6 (2014) 3223–3230.

[42]

D.D. Peng, Z.M. Ding, Y.K. Fu, Y. Wang, J. Bi, et al., RSC Adv. 8 (2018) 28787–28796.

[43]

Y. Wang, Z.M. Ding, X.J. Li, S.Q. Ren, S.H. Zhou, et al., Dalton. Trans. 49 (2020) 3495–3502.

[44]

X.J. Li, Y.K. Fu, Y.C. Xie, L. Cong, H. Yu, et al., Int. J. Hydrogen Energy 46 (2021) 33186–33196.

[45]

Z.W. Ma, J.X. Zou, C.Z. Hu, W. Zhu, D. Khan, et al., Int. J. Hydrogen Energy 44 (2019) 29235–29248.

[46]

Q.H. Hou, X.L. Yang, J.Q. Zhang, W.J. Yang, E. Lv, J. Alloy. Compd. 899 (2022) 163314.

[47]

H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.

[48]

S.M. Zhou, D. Wei, H.Y. Wan, X. Yang, Y.J. Dai, et al., Inorg. Chem. Front. 9 (2022) 5495–5506.

[49]

N. Sazelee, M.F. Md Din, M. Ismail, S.U. Rather, H.S. Bamufleh, et al., Materials 16 (2023) 2449.

[50]

N. Sazelee, M.F. Md Din, M. Ismail, Materials 16 (2023) 2176.

[51]

M. Ismail, Int. J. Hydrogen Energy 46 (2021) 8621–8628.

[52]

H.F. Fu, J. Hu, Y.F. Lu, X.M. Li, Y.A. Chen, et al., ACS Appl. Mater. Interfaces 14 (2022) 33161–33172.

[53]

N.A. Sazelee, N.H. Idris, M.F. Md Din, M. S.Yahya, N.A. Ali, et al., Results Phys. 16 (2020) 102844.

[54]

H.Z. Liu, C.L. Lu, X.C. Wang, L.T. Xu, X.T. Huang, et al., ACS Appl. Mater. Interfaces 13 (2021) 13235–13247.

[55]
N.A. Sazelee, N.A. Ali, M.S. Yahya, M.F. Md Din, M. Ismail, Int. J. Hydrogen Energy (2023) in press.
[56]

Z.R. Yuan, S.H. Li, K. Wang, N. Xu, W.P. Sun, et al., Chem. Eng. J. 435 (2022) 135050.

[57]

L.Z. Ouyang, S.Y. Ye, H.W. Dong, M. Zhu, Appl. Phys. Lett. 90 (2007) 021917.

[58]

W. Jander, Z. anorg allg Chem. 163 (1927) 1-30 (in German).

[59]

M. Avrami, J. Chem. Phys. 9 (1941) 177–184.

[60]

J.W. Christian, Theory of Transformation in Metals and Alloys, an Advanced Textbook in Physical Metallurgy, Pergamon, Oxford, 1975.

[61]

G. Barkhordarian, T. Klassen, R. Bormann, J. Alloy. Compd. 407 (2006) 249–255.

[62]

F.J. Castro, G. Meyer, J. Alloy. Compd. 330-332 (2002) 59–63.

[63]

G. Liu, Y.J. Wang, F.Y. Qiu, L. Li, L.F. Jiao, et al., J. Mater. Chem. 22 (2012) 22542–22549.

[64]

S. Wang, M.X. Gao, Z.H. Yao, K.C. Xian, M.H. Wu, et al., J. Magnes. Alloys 10 (2022) 3354–3366.

Journal of Magnesium and Alloys
Pages 4278-4288
Cite this article:
Ding S, Qiao Y, Cai X, et al. Catalytic mechanisms of nickel nanoparticles for the improved dehydriding kinetics of magnesium hydride. Journal of Magnesium and Alloys, 2024, 12(10): 4278-4288. https://doi.org/10.1016/j.jma.2023.07.002
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return