The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy storage. Unfortunately, the inherent chemical properties of magnesium lead to poor cycling stability and electrochemical reactivity, which seriously limit the application of Mg-based materials in supercapacitors. Herein, in this review, more than 70 research papers published in recent 10 years were collected and analyzed. Some representative research works were selected, and the results of various regulative strategies to improve the electrochemical performance of Mg-based materials were discussed. The effects of various regulative strategies (such as constructing nanostructures, synthesizing composites, defect engineering, and binder-free synthesis, etc.) on the electrochemical performance and their mechanism are demonstrated using spinel-structured MgX2O4 and layered structured Mg-X-LDHs as examples. In addition, the application of magnesium oxide and magnesium hydroxide in electrode materials, MXene's solid spacers and hard templates are introduced. Finally, the challenges and outlooks of Mg-based electrochemical energy storage materials in high performance supercapacitors are also discussed.
Q. Li, X. Peng, F. Pan, J. Magnes. Alloy. 9 (2021) 2223–2224, doi: 10.1016/j.jma.2021.11.003.
Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, F.S. Pan, J. Magnes. Alloy. 9 (2021) 705–747, doi: 10.1016/j.jma.2021.04.001.
F. Liu, G. Cao, J. Ban, H. Lei, Y. Zhang, G. Shao, A. Zhou, L. z. Fan, J. Hu, J. Magnes. Alloy. 10 (2022) 2699–2716, doi: 10.1016/j.jma.2022.09.004.
J. Song, J. Chen, X. Xiong, X. Peng, D. Chen, F. Pan, J. Magnes. Alloy. 10 (2022) 863–898, doi: 10.1016/j.jma.2022.04.001.
W.J. Kwak, D. Sharon Rosy, C. Xia, H. Kim, L.R. Johnson, P.G. Bruce, L.F. Nazar, Y.K. Sun, A.A. Frimer, M. Noked, S.A. Freunberger, D. Aurbach, Chem. Rev. 120 (2020) 6626–6683, doi: 10.1021/acs.chemrev.9b00609.
Y.L. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 5 (2020) 646–656, doi: 10.1038/s41560-020-0655-0.
Y.X. Song, C.Z. Zhang, C.Y. Ling, M. Han, R.Y. Yong, D. Sun, J.R. Chen, Int. J. Hydrogen Energy 45 (2020) 29832–29847, doi: 10.1016/j.ijhydene.2019.07.231.
Q.N. Zhao, R.H. Wang, Y.X. Zhang, G.S. Huang, B. Jiang, C.H. Xu, F.S. Pan, J. Magnes. Alloy. 9 (2021) 78–89, doi: 10.1016/j.jma.2020.12.001.
F.L. Tong, S.H. Wei, X.Z. Chen, W. Gao, J. Magnes. Alloy. 9 (2021) 1861–1883, doi: 10.1016/j.jma.2021.04.011.
F.L. Tong, X.Z. Chen, S.H. Wei, J. Malmstrom, J. Vella, W. Gao, J. Magnes. Alloy. 9 (2021) 1967–1976, doi: 10.1016/j.jma.2021.08.022.
D.J. Li, Y. Yuan, J.W. Liu, M. Fichtner, F.S. Pan, J. Magnes. Alloy. 8 (2020) 963–979, doi: 10.1016/j.jma.2020.09.017.
X. Li, P. Li, Z. Wu, D. Luo, H.-Y. Yu, Z.-H. Lu, Mater. Rep.: Energy 1 (2021) 100001, doi: 10.1016/j.matre.2020.09.001.
H. Liu, D. Zhao, Y. Liu, P. Hu, X. Wu, H. Xia, Chem. Eng. J. 373 (2019) 485–492, doi: 10.1016/j.cej.2019.05.066.
X. Pan, F. Ji, Q. Xia, X. Chen, H. Pan, S.N. Khisro, S. Luo, M. Chen, Y. Zhang, Electrochim. Acta 282 (2018) 905–912, doi: 10.1016/j.electacta.2018.06.127.
J. Wang, X. Zhang, W. Han, X. Mu, Y. Zhang, X. Zhao, Y. Chen, Z. Yang, Q. Su, E. Xie, W. Lan, Electrochim. Acta 224 (2017) 260–268, doi: 10.1016/j.electacta.2016.12.073.
O.C. Pore, A.V. Fulari, R.V. Shejwal, V.J. Fulari, G.M. Lohar, Chem. Eng. J. 426 (2021) 131544, doi: 10.1016/j.cej.2021.131544.
J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4 (2014), doi: 10.1002/aenm.201300816.
X. Zhao, L. Mao, Q. Cheng, J. Li, F. Liao, G. Yang, L. Xie, C. Zhao, L. Chen, Chem. Eng. J. 387 (2020) 124081, doi: 10.1016/j.cej.2020.124081.
S.Y. Hsu, F.H. Hsu, J.L. Chen, Y.S. Cheng, J.M. Chen, K.T. Lu, Mat. Chem. Front. 5 (2021) 4937–4949, doi: 10.1039/d1qm00222h.
T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Energy Storage Mater. 16 (2019) 545–573, doi: 10.1016/j.ensm.2018.09.007.
N. Zhang, Y. Li, J. Xu, J. Li, B. Wei, Y. Ding, I. Amorim, R. Thomas, S.M. Thalluri, Y. Liu, G. Yu, L. Liu, ACS Nano 13 (2019) 10612–10621, doi: 10.1021/acsnano.9b04810.
S. Zhu, W. Huo, T. Wang, K. Li, X. Liu, J. Ji, H. Yao, F. Dong, Y. Zhang, L. Zhang, Nano Mater. Sci. 3 (2021) 404–411, doi: 10.1016/j.nanoms.2021.06.008.
L. Kang, C. Huang, J. Zhang, M. Zhang, N. Zhang, S. Liu, Y. Ye, C. Luo, Z. Gong, C. Wang, X. Zhou, X. Wu, S.C. Jun, Chem. Eng. J. (2020) 390, doi: 10.1016/j.cej.2020.124643.
J. Bhagwan, B.N.V. Krishna, J.S. Yu, Int. J. Energy Res. 46 (2022) 7788–7798, doi: 10.1002/er.7680.
B. Li, Y.S. Fu, H. Xia, X. Wang, Mater. Lett. 122 (2014) 193–196, doi: 10.1016/j.matlet.2014.02.046.
C. Sun, H. Wang, F. Yang, A. Tang, G. Huang, L. Li, Z. Wang, B. Qu, C. Xu, S. Tan, X. Zhou, J. Wang, F. Pan, J. Magnes. Alloy. 11 (2023) 840–850, doi: 10.1016/j.jma.2022.11.005.
F. Tong, X. Chen, S. Wei, J. Malmstrom, J. Vella, W. Gao, J. Magnes. Alloy. 9 (2021) 1967–1976, doi: 10.1016/j.jma.2021.08.022.
J.F. Song, J. She, D.L. Chen, F.S. Pan, J. Magnes. Alloy. 8 (2020) 1–41, doi: 10.1016/j.jma.2020.02.003.
S.V.S. Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, S. Singh, J. Magnes. Alloy. 10 (2022) 1–61, doi: 10.1016/j.jma.2021.05.012.
Y.C. Zhu, K. Rajoua, S. Le Vot, O. Fontaine, P. Simon, F. Favier, Nano Energy 73 (2020), doi: 10.1016/j.nanoen.2020.104734.
Y. Kado, Y. Soneda, Microporous Mesoporous Mater. 310 (2021), doi: 10.1016/j.micromeso.2020.110646.
L.S. Ferreira, T.R. Silva, V.D. Silva, T.A. Simoes, A.J.M. Araujo, M.A. Morales, D.A. Macedo, Adv. Powder Technol. 31 (2020) 604–613, doi: 10.1016/j.apt.2019.11.015.
P.J. Ma, Y.L. Sun, X. Zhang, J.T. Chen, B.J. Yang, Q.N. Zhang, X.H. Gao, X.B. Yan, Energy Storage Mater. 23 (2019) 159–167, doi: 10.1016/j.ensm.2019.05.016.
M.S. Park, J. Kim, K.J. Kim, J.W. Lee, J.H. Kim, Y. Yamauchi, Phys. Chem. Chem. Phys. 17 (2015) 30963–30977, doi: 10.1039/c5cp05936d.
M. Nagaraju, S.C. Sekhar, B. Ramulu, S.J. Arbaz, J.S. Yu, J. Magnes. Alloy. 10 (2022) 3565–3575, doi: 10.1016/j.jma.2021.12.012.
S. Gu, C.-T. Hsieh, M.M. Huq, J.-P. Hsu, Y.A. Gandomi, J. Li, J. Solid State Electrochem. 23 (2019) 1399–1407, doi: 10.1007/s10008-018-04186-1.
S.G. Krishnan, M.V. Reddy, M. Harilal, B. Vidyadharan, Misnon II, M.H. Ab Rahim, J. Ismail, R. Jose, Electrochim. Acta 161 (2015) 312–321, doi: 10.1016/j.electacta.2015.02.081.
E. Ekebas, A. Cetin, A.M. Onal, E.N. Esenturk, J. Appl. Electrochem. 49 (2019) 315–325, doi: 10.1007/s10800-018-01285-9.
J. Liu, H. Liang, Y. Zhang, G. Wu, H. Wu, Compos. Pt. B-Eng. 176 (2019), doi: 10.1016/j.compositesb.2019.107240.
Y.A. Kumar, S. Singh, P.J.S. Rana, K.D. Kumar, H.-J. Kim, New J. Chem. 44 (2020) 4266–4275, doi: 10.1039/c9nj06318h.
H. Chen, X. Du, R. Wu, Y. Wang, J. Sun, Y. Zhang, C. Xu, Nanoscale Adv. 2 (2020) 3263–3275, doi: 10.1039/d0na00353k.
O.C. Pore, A.V. Fulari, R.V. Shejwal, V.J. Fulari, G.M. Lohar, Chem. Eng. J. 426 (2021), doi: 10.1016/j.cej.2021.131544.
L. Merabet, K. Rida, N. Boukmouche, Ceram. Int. 44 (2018) 11265–11273, doi: 10.1016/j.ceramint.2018.03.171.
S.G. Krishnan, M. Harilal, A. Yar, B.L. Vijayan, J.O. Dennis, M.M. Yusoff, R. Jose, Electrochim. Acta 243 (2017) 119–128, doi: 10.1016/j.electacta.2017.05.064.
J.S. Xu, L. Wang, J. Zhang, J.H. Qian, J. Liu, Z.Q. Zhang, H.D. Zhang, X.Y. Liu, J. Alloys Compd. 688 (2016) 933–938, doi: 10.1016/j.jallcom.2016.07.250.
C.L. Zhao, J.K. Zhu, Y.Q. Jiang, F. Gao, L. Xie, L.Y. Chen, Mater. Lett. 271 (2020), doi: 10.1016/j.matlet.2020.127799.
X. Guan, Q. Wang, P. Luo, Y. Yu, X. Li, Y. Zhang, D. Chen, Int. J. Electrochem. Sci. 13 (2018) 2272–2285, doi: 10.20964/2018.03.35.
X.F. Guan, P.H. Luo, X.Y. Li, Y.L. Yu, Y.J. Wang, L. Zhuo, D.G. Chen, Int. J. Electrochem. Sci. 13 (2018) 5016–5030, doi: 10.20964/2018.05.14.
Z.Q. Liu, Y.L. Qiu, A.T. Zhang, W.R. Yang, C.J. Barrow, J.M. Razal, A.H. Li, J.Q. Liu, Appl. Surf. Sci. 568 (2021), doi: 10.1016/j.apsusc.2021.150856.
Y. Teng, D. Yu, Y. Li, Y. n. Meng, Y. Wu, Y. Feng, Y. Hua, C. Wang, X. Zhao, X. Liu, J. Electrochem. Soc. 167 (2020), doi: 10.1149/1945-7111/ab63c2.
Y. Teng, D. Yu, Y. Li, Y. n. Meng, Y. Xue, J. Liu, Y. Feng, C. Wang, Y. Hua, X. Zhao, X. Liu, Energy Fuels 35 (2021) 6272–6281, doi: 10.1021/acs.energyfuels.1c00346.
J. Xu, L. Wang, Sci. Rep. (2019) 9, doi: 10.1038/s41598-019-48931-6.
H. Gao, X. Wang, G. Wang, C. Hao, S. Zhou, C. Huang, Nanoscale 10 (2018) 10190–10202, doi: 10.1039/c8nr02311e.
H. Wang, N. Mi, S. Sun, W. Zhang, S. Yao, J. Alloys Compd. 869 (2021), doi: 10.1016/j.jallcom.2021.159294.
Z. Zhu, R. Zhang, J. Lin, K. Zhang, N. Li, C. Zhao, G. Chen, C. Zhao, J. Power Sources 437 (2019), doi: 10.1016/j.jpowsour.2019.226941.
L. Lin, J. Liu, T. Liu, J. Hao, K. Ji, R. Sun, W. Zeng, Z. Wang, J. Mater. Chem. A 3 (2015) 17652–17658, doi: 10.1039/c5ta04054j.
Y. Zhang, Y. Zhang, D. Zhang, L. Sun, Dalton Trans. 46 (2017) 9457–9465, doi: 10.1039/c7dt01654a.
S. Li, Y.-F. Dong, D.-D. Wang, W. Chen, L. Huang, C.-W. Shi, L.-Q. Mai, Front. Phys. 9 (2014) 303–322, doi: 10.1007/s11467-013-0343-7.
B.S. Singu, S.E. Hong, K.R. Yoon, J. Solid State Electrochem. 21 (2017) 3215–3220, doi: 10.1007/s10008-017-3661-9.
R. Zhang, J. Yan, L. Wang, W. Shen, J. Zhang, M. Zhong, S. Guo, J. Power Sources (2021) 513, doi: 10.1016/j.jpowsour.2021.230559.
X. Zhuang, K. Jia, B. Cheng, X. Feng, S. Shi, B. Zhang, Chem. Eng. J. 237 (2014) 308–311, doi: 10.1016/j.cej.2013.10.038.
W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, ACS Appl. Mater. Interfaces 6 (2014) 19318–19326, doi: 10.1021/am5053784.
J. Huang, H. Wu, D. Cao, G. Wang, Electrochim. Acta 75 (2012) 208–212, doi: 10.1016/j.electacta.2012.04.134.
X. Yan, X. Tong, L. Ma, Y. Tian, Y. Cai, C. Gong, M. Zhang, L. Liang, Mater. Lett. 124 (2014) 133–136, doi: 10.1016/j.matlet.2014.03.067.
X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang, L. Liang, J. Alloys Compd. 593 (2014) 184–189, doi: 10.1016/j.jallcom.2014.01.036.
H. Huang, X. Wang, Nanoscale 3 (2011) 3185–3191, doi: 10.1039/c1nr10229j.
S.M. Ingole, S.T. Navale, Y.H. Navale, I.A. Dhole, R.S. Mane, F.J. Stadler, V.B. Patil, J. Solid State Electrochem. 21 (2017) 1817–1826, doi: 10.1007/s10008-017-3557-8.
X. Sun, P. Yang, S. Wang, C. Jin, M. Ren, H. Xing, Langmuir 37 (2021) 10403–10412, doi: 10.1021/acs.langmuir.1c00737.
G.A.M. Ali, M.M. Yusoff, E.R. Shaaban, K.F. Chong, Ceram. Int. 43 (2017) 8440–8448, doi: 10.1016/j.ceramint.2017.03.195.
R. Dhilipkumar, C. Jeganathan, K.L.V. Joseph, C. Karthikeyan, S. Karuppuchamy, J. Mater. Sci.-Mater. Electron. 32 (2021) 26567–26577, doi: 10.1007/s10854-021-07033-8.
R. Zhang, Q. Tu, X. Li, X. Sun, X. Liu, L. Chen, Nanomaterials 12 (2022), doi: 10.3390/nano12132216.
J.L. Sun, Y. Wang, Y.F. Zhang, C.J. Xu, H.Y. Chen, Nanoscale Res. Lett. 14 (2019), doi: 10.1186/s11671-019-3172-y.
S. Vijayakumar, S. Nagamuthu, K.S. Ryu, Dalton Trans. 47 (2018) 6722–6728, doi: 10.1039/c8dt00591e.
Y. Wang, J.L. Sun, S.S. Li, Y.F. Zhang, C.J. Xu, H.Y. Chen, J. Alloys Compd. 824 (2020), doi: 10.1016/j.jallcom.2020.153939.
J. Bhagwan, N. Kumar, Y. Sharma, J. Energy Storage 46 (2022), doi: 10.1016/j.est.2021.103894.
E. Bao, X. Ren, R. Wu, X. Liu, H. Chen, Y. Li, C. Xu, J. Colloid Interface Sci. 625 (2022) 925–935, doi: 10.1016/j.jcis.2022.06.098.
H.P. Zhao, Y. Lei, Adv. Energy Mater. 10 (2020), doi: 10.1002/aenm.202001460.
Z.C. Bai, Z.C. Ju, C.L. Guo, Y.T. Qian, B. Tang, S.L. Xiong, Nanoscale 6 (2014) 3268–3273, doi: 10.1039/c3nr05676g.
P. Galek, A. Mackowiak, P. Bujewska, K. Fic, Front. Energy Res. 8 (2020), doi: 10.3389/fenrg.2020.00139.
B. Li, T. Wang, Q. Le, R. Qin, Y. Zhang, H.C. Zeng, Nano Mater. Sci. (2022), doi: 10.1016/j.nanoms.2022.05.001.
Y. Wang, J. Sun, S. Li, Y. Zhang, C. Xu, H. Chen, J. Alloys Compd. 824 (2020), doi: 10.1016/j.jallcom.2020.153939.
M. Kim, J. Kim, Electrochim. Acta 260 (2018) 921–931, doi: 10.1016/j.electacta.2017.12.069.
X.-B. Zhang, M.-H. Chen, X.-G. Zhang, Q.-W. Li, Acta Phys.-Chim. Sin. 26 (2010) 3169–3174, doi: 10.3866/pku.Whxb20101203.
Q. Guo, X. Zhou, X. Li, S. Chen, A. Seema, A. Greiner, H. Hou, J. Mater. Chem. 19 (2009) 2810–2816, doi: 10.1039/b820170f.
S. Zheng, Z.-S. Wu, S. Wang, H. Xiao, F. Zhou, C. Sun, X. Bao, H.-M. Cheng, Energy Storage Mater. 6 (2017) 70–97, doi: 10.1016/j.ensm.2016.10.003.
Z. Lei, L. Lu, X.S. Zhao, Energy Environ. Sci. 5 (2012) 6391–6399, doi: 10.1039/c1ee02478g.
X. Zhao, L. Mao, Q.H. Cheng, J. Li, F.F. Liao, G.Y. Yang, L. Xie, C.L. Zhao, L.Y. Chen, Chem. Eng. J. (2020) 387, doi: 10.1016/j.cej.2020.124081.
X. Wu, L. Meng, Q. Wang, W. Zhang, Y. Wang, Mater. Lett. 206 (2017) 71–74, doi: 10.1016/j.matlet.2017.06.118.
Y.-P. Gao, Z.-B. Zhai, Q.-Q. Wang, Z.-Q. Hou, K.-J. Huang, J. Colloid Interface Sci. 539 (2019) 38–44, doi: 10.1016/j.jcis.2018.12.045.
J. Shi, B. Zheng, L. Mao, C. Cheng, Y. Hu, H. Wang, G. Li, D. Jing, X. Liang, Int. J. Hydrogen Energy 46 (2021) 2927–2935, doi: 10.1016/j.ijhydene.2020.04.216.
S. Polat, M. Mashrah, J. Mater. Sci.-Mater. Electron. 33 (2022) 23427–23436, doi: 10.1007/s10854-022-09104-w.
Y. Teng, Y. Li, Z. Zhang, D. Yu, Y. Feng, Y. Meng, W. Tong, Y. Wu, X. Zhao, X. Liu, Chem.-Eur. J. 24 (2018) 14982–14988, doi: 10.1002/chem.201802274.
P. Zhang, J.Y. Zhou, W.J. Chen, Y.Y. Zhao, X.M. Mu, Z.X. Zhang, X.J. Pan, E.Q. Xie, Chem. Eng. J. 307 (2017) 687–695, doi: 10.1016/j.cej.2016.08.131.
Y. Li, S.M. Zhang, M.Y. Ma, X.M. Mu, Y.X. Zhang, J.W. Du, Q. Hu, B.Y. Huang, X.H. Hua, G. Liu, E.Q. Xie, Z.X. Zhang, Chem. Eng. J. 372 (2019) 452–461, doi: 10.1016/j.cej.2019.04.167.
Q. Liu, X.D. Hong, X.Y. You, X. Zhang, X. Zhao, X. Chen, M.D. Ye, X.Y. Liu, Energy Storage Mater. 24 (2020) 541–549, doi: 10.1016/j.ensm.2019.07.001.
L.F. Shen, L. Yu, H.B. Wu, X.Y. Yu, X.G. Zhang, X.W. Lou, Nat. Commun. 6 (2015), doi: 10.1038/ncomms7694.
X.Y. Yu, L. Yu, X.W. Lou, Adv. Energy Mater. 6 (2016), doi: 10.1002/aenm.201501333.
I. Naskar, P. Ghosal, M. Deepa, J. Energy Storage 55 (2022), doi: 10.1016/j.est.2022.105389.
Z.Q. Liu, Y.X. Zhong, Y.L. Qiu, L. Cui, W.R. Yang, J.M. Razal, C.J. Barrow, J.Q. Liu, Appl. Surf. Sci. 546 (2021), doi: 10.1016/j.apsusc.2021.149133.
J. Cao, J. Li, L. Li, Y. Zhang, D. Cai, D. Chen, W. Han, ACS Sustain. Chem. Eng. 7 (2019) 10699–10707, doi: 10.1021/acssuschemeng.9b01343.
Z. Hu, X. Xiao, L. Huang, C. Chen, T. Li, T. Su, X. Cheng, L. Miao, Y. Zhang, J. Zhou, Nanoscale 7 (2015) 16094–16099, doi: 10.1039/c5nr04682c.
M. Nazarian-Samani, M. Nazarian-Samani, S. Haghighat-Shishavan, K.B. Kim, Energy Storage Mater. 36 (2021) 229–241, doi: 10.1016/j.ensm.2020.12.029.
X.C. Zhou, H. Gao, Y.F. Wang, Z. Liu, J.Q. Lin, Y. Ding, J. Mater. Chem. A 6 (2018) 14939–14948, doi: 10.1039/c8ta03784a.
M.W. Alam, V.G.D. Kumar, C.R. Ravikumar, S.C. Prashantha, H.C.A. Murthy, M.R.A. Kumar, J. Phys. Chem. Solids 161 (2022), doi: 10.1016/j.jpcs.2021.110491.
A. Manohar, V. Vijayakanth, S.V.P. Vattikuti, P. Manivasagan, E.S. Jang, K.H. Kim, J. Alloys Compd. 907 (2022), doi: 10.1016/j.jallcom.2022.164566.
Y. Shi, L.L. Peng, Y. Ding, Y. Zhao, G.H. Yu, Chem. Soc. Rev. 44 (2015) 6684–6696, doi: 10.1039/c5cs00362h.
S. Sathishkumar, M. Karthik, R. Boopathiraja, M. Parthibavarman, S. Nirmaladevi, S. Sathishkumar, J. Mater. Sci.-Mater. Electron. 33 (2022) 21600–21614, doi: 10.1007/s10854-022-08949-5.
Y. Wang, X. Ma, S. Li, J. Sun, Y. Zhang, H. Chen, C. Xu, J. Alloys Compd. 818 (2020), doi: 10.1016/j.jallcom.2019.152905.
S.G. Krishnan, M. Harilal, I.I. Misnon, M.V. Reddy, S. Adams, R. Jose, Ceram. Int. 43 (2017) 12270–12279, doi: 10.1016/j.ceramint.2017.06.089.
Z. Liu, A. Li, Y. Qiu, Q. Zhao, Y. Zhong, L. Cui, W. Yang, J.M. Razal, C.J. Barrow, J. Liu, J. Colloid Interface Sci. 592 (2021) 455–467, doi: 10.1016/j.jcis.2021.02.011.
Z. Liu, Y. Liu, Y. Zhong, L. Cui, W. Yang, J.M. Razal, C.J. Barrow, J. Liu, J. Power Sources 484 (2021), doi: 10.1016/j.jpowsour.2020.229288.
Z.K. Heiba, M.A. Deyab, A.M. El-naggar, M.B. Mohamed, Ceram. Int. 47 (2021) 7475–7486, doi: 10.1016/j.ceramint.2020.11.088.
W. He, M. Pang, S. Jiang, H. Yang, R. Wang, N. Li, Q. Pan, J. Li, J. Zhao, Synth. Met. 285 (2022), doi: 10.1016/j.synthmet.2022.117021.
S. Vijayakumar, S. Nagamuthu, K.-S. Ryu, Dalton Trans. 47 (2018) 6722–6728, doi: 10.1039/c8dt00591e.
M. Daud, M.S. Kamal, F. Shehzad, M.A. Al-Harthi, Carbon 104 (2016) 241–252, doi: 10.1016/j.carbon.2016.03.057.
G.L. Fan, F. Li, D.G. Evans, X. Duan, Chem. Soc. Rev. 43 (2014) 7040–7066, doi: 10.1039/c4cs00160e.
Y. Kuang, L.N. Zhao, S.A. Zhang, F.Z. Zhang, M.D. Dong, S.L. Xu, Materials 3 (2010) 5220–5235, doi: 10.3390/ma3125220.
L. Mohapatra, K. Parida, J. Mater. Chem. A 4 (2016) 10744–10766, doi: 10.1039/c6ta01668e.
H.J. Yin, Z.Y. Tang, Chem. Soc. Rev. 45 (2016) 4873–4891, doi: 10.1039/c6cs00343e.
M. Zubair, M. Daud, G. McKay, F. Shehzad, M.A. Al-Harthi, Appl. Clay Sci. 143 (2017) 279–292, doi: 10.1016/j.clay.2017.04.002.
J. Yu, Q. Wang, D. O'Hare, L. Sun, Chem. Soc. Rev. 46 (2017) 5950–5974, doi: 10.1039/c7cs00318h.
M. Sarfraz, I. Shakir, J. Energy Storage 13 (2017) 103–122, doi: 10.1016/j.est.2017.06.011.
Y. Li, X. Lu, M. Serdechnova, C. Blawert, M.L. Zheludkevich, K. Qian, T. Zhang, F. Wang, J. Magnes. Alloy. 11 (2023) 1236–1246, doi: 10.1016/j.jma.2021.07.015.
T. Shulha, M. Serdechnova, M.H. Iuzviuk, I.A. Zobkalo, P. Karlova, N. Scharnagl, D.C.F. Wieland, S.V. Lamaka, A.A. Yaremchenko, C. Blawert, M.L. Zheludkevich, J. Magnes. Alloy. 10 (2022) 1268–1285, doi: 10.1016/j.jma.2021.10.006.
C. Jing, Q. Zhang, X. Liu, Y. Chen, X. Wang, L. Xia, H. Zeng, D. Wang, W. Zhang, F. Dong, RSC Adv. 9 (2019) 9604–9612, doi: 10.1039/c9ra01341e.
Y. Ouyang, L.-X. Li, Z.-H. Xie, L. Tang, F. Wang, C.-J. Zhong, J. Magnes. Alloy. 10 (2022) 836–849, doi: 10.1016/j.jma.2020.11.007.
G. Zhang, E. Jiang, L. Wu, A. Tang, A. Atrens, F. Pan, J. Magnes. Alloy. 10 (2022) 1351–1357, doi: 10.1016/j.jma.2021.03.008.
T. Li, G.H. Li, L.H. Li, L. Liu, Y. Xu, H.Y. Ding, T. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 2562–2572, doi: 10.1021/acsami.5b10158.
J. Zhao, C.X. Ge, Z.Y. Zhao, Q. Wu, M. Liu, M.L. Yan, L.J. Yang, X.Z. Wang, Z. Hu, Nano Energy 76 (2020), doi: 10.1016/j.nanoen.2020.105026.
S. Huang, G.-N. Zhu, C. Zhang, W.W. Tjiu, Y.-Y. Xia, T. Liu, ACS Appl. Mater. Interfaces 4 (2012) 2242–2249, doi: 10.1021/am300247x.
J. Zai, Y. Liu, X. Li, Z.-f. Ma, R. Qi, X. Qian, Nano-Micro Lett. 9 (2017), doi: 10.1007/s40820-016-0121-5.
M. Li, P. Yuan, S. Guo, F. Liu, J.P. Cheng, Int. J. Hydrogen Energy 42 (2017) 28797–28806, doi: 10.1016/j.ijhydene.2017.10.019.
Y. Wang, C. Xiang, Z. Xiao, F. Xu, L. Sun, J. Zhang, Y. Zou, J. Energy Storage 44 (2021), doi: 10.1016/j.est.2021.103311.
M.B. Poudel, H.J. Kim, Chem. Eng. J. 429 (2022), doi: 10.1016/j.cej.2021.132345.
X. Gao, X. Liu, D. Wu, B. Qian, Z. Kou, Z. Pan, Y. Pang, L. Miao, J. Wang, Adv. Funct. Mater. 29 (2019), doi: 10.1002/adfm.201903879.
Y. Gao, Z. Wei, J. Xu, Electrochim. Acta 330 (2020), doi: 10.1016/j.electacta.2019.135195.
G. Zhou, X. Gao, S. Wen, X. Wu, L. Zhang, T. Wang, P. Zhao, J. Yin, W. Zhu, J. Colloid Interface Sci. 612 (2022) 772–781, doi: 10.1016/j.jcis.2021.12.087.
M. Zhang, Y. Sun, R. Song, Microporous Mesoporous Mater. 330 (2022), doi: 10.1016/j.micromeso.2021.111593.
J. Han, H.-Y. Zeng, X. Cao, C.-R. Chen, J. Mater. Sci.-Mater. Electron. 28 (2017) 2754–2762, doi: 10.1007/s10854-016-5855-9.
Y. Zhang, S. Wei, J. Nanopart. Res. 21 (2019), doi: 10.1007/s11051-018-4452-7.
G. Hatui, G.C. Nayak, G. Udayabhanu, Electrochim. Acta 219 (2016) 214–226, doi: 10.1016/j.electacta.2016.09.152.
A. Nanwani, K.A. Deshmukh, P. Sivaraman, D.R. Peshwe, I. Sharma, S.J. Dhoble, H.C. Swart, A.D. Deshmukh, B.K. Gupta, npj 2D Mater. Appl. 3 (2019), doi: 10.1038/s41699-019-0126-2.
M.J. Xie, S.Y. Duan, Y. Shen, K. Fang, Y.Z. Wang, M. Lin, X.F. Guo, ACS Energy Lett. 1 (2016) 814–819, doi: 10.1021/acsenergylett.6b00258.
J.Z. Yin, G.L. Zhou, X.L. Gao, J.Q. Chen, L.L. Zhang, J.Y. Xu, P.S. Zhao, F. Gao, Nanomaterials 9 (2019), doi: 10.3390/nano9121686.
W. Zheng, J. Halim, P.O.Å. Persson, J. Rosen, M.W. Barsoum, Mater. Rep.: Energy 2 (2022) 100078, doi: 10.1016/j.matre.2022.100078.
X. Lu, H. Xu, P. Yang, L. Xiao, Y. Li, J. Ma, R. Li, L. Liu, A. Liu, V. Kondratiev, O. Levin, J. Zhang, M. An, Appl. Catal. BEnvironmental 313 (2022), doi: 10.1016/j.apcatb.2022.121454.
C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, F. Wei, J. Am. Chem. Soc. 136 (2014) 2256–2259, doi:10.1021/ja412219r.