PDF (10.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Full Length Article | Open Access

Layered double hydroxide-derived Mg2Ni/TiH1.5 composite catalysts for enhancing hydrogen storage performance of MgH2

Gang HuangaYao LuaXiaofang Liua()Wukui TangaXinyu LiaFeng Wanga,bJianglan Shuia()Ronghai Yua()
School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, PR China
School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, PR China
Show Author Information

Abstract

Developing efficient catalysts is of great significance in improving the sluggish kinetics and high desorption temperature of MgH2 hydrogen storage material. Here, ultrathin NiTi-layered double hydroxide (NiTi-LDH) nanosheets are used as precursors to prepare Mg2Ni/TiH1.5 composite catalysts to improve the hydrogen storage properties of MgH2. The variation of Ni/Ti ratio in LDH plays an important role in regulating the composition, morphology and distribution of Mg2Ni/TiH1.5 catalysts, which significantly affect their synergistic catalytic effect. Mg2Ni/TiH1.5 composite catalyst exhibits significantly improved catalytic performance compared with conventional Ni-, Ti- and Ni/Ti-based catalysts. The optimal MgH2/Mg2Ni/TiH1.5 system shows a significantly reduced desorption temperature of 212 ℃ which is 133 ℃ lower than that of pure MgH2 (345 ℃), and can release 5.97 wt% hydrogen within 300s at 300 ℃. Further mechanism analysis reveals that the unique flaky morphology and suitable composition of Ni/Ti LDH can significantly enhance the synergistic effect of Mg2Ni and TiH1.5, which promotes the fracture of the HH and Mg-H bonds.

References

[1]

P. Jena, J. Phys. Chem. Lett. 2 (2011) 206–211.

[2]

K.J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan, J.J. Urban, Nat. Mater. 10 (2011) 286–290.

[3]

B. Sakintuna, F. Lamaridarkrim, M. Hirscher, Int. J. Hydrog. Energy 32 (2007) 1121–1140.

[4]

G. Huang, X. Liu, Z. Li, Y. Yuan, X. Li, S. Liu, R. Yu, J. Shui, Chem. Eng. J. 473 (2023) 145342.

[5]

Y. Yuan, X. Liu, W. Tang, Z. Li, G. Huang, H. Zou, R. Yu, J. Shui, ACS Appl. Mater. Interfaces 15 (2023) 3904–3911.

[6]

S. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, C.M. Jensen, Chem. Rev. 107 (2007) 4111–4132.

[7]

F. Schuth, B. Bogdanovic, M. Felderhoff, Chem. Commun. 20 (2004) 2249–2258.

[8]

L. Zaluski, A. Zaluska, J.O. StrÖM-Olsen, J. Alloys Compd. 290 (1999) 71–78.

[9]

V. Meregalli, M. Parrinello, Appl. Phys. A Mater. 72 (2001) 143–146.

[10]

P. Chen, Science 285 (1999) 91–93.

[11]

M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Chem. Rev. 112 (2012) 782–835.

[12]

X. Lin, N.R. Champness, M. Schroder, Top. Curr. Chem. 293 (2010) 35–76.

[13]

Y.H. Hu, L. Zhang, Adv. Mater. 22 (2010) E117–E130.

[14]

K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, J. Energy Chem. 30 (2019) 132–144.

[15]

S. Liu, J. Liu, X. Liu, J. Shang, L. Xu, R. Yu, J. Shui, Nat. Nanotechnol. 16 (2021) 331–336.

[16]

S. Liu, J. Liu, X. Liu, J.X. Shang, R. Yu, J. Shui, Appl. Phys. Rev. 9 (2022) 021315.

[17]

G.S. Walker, M. Abbas, D.M. Grant, C. Udeh, Chem. Commun. 47 (2011) 8001–8003.

[18]

S. Li, X. Yang, J. Hou, W. Du, J. Magnes. Alloys 8 (2020) 78–90.

[19]

L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu, J. Alloys Compd. 691 (2017) 422–435.

[20]

L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, J. Alloys Compd. 586 (2014) 113–117.

[21]

L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Int. J. Hydrog. Energy 38 (2013) 8881–8887.

[22]

A. Zaluska, L. Zaluski, J.O. StrÖM-Olsen, Appl. Phys. A 72 (2001) 157–165.

[23]

A. Pundt, Adv. Eng. Mater. 6 (2004) 11–21.

[24]

E.N. Koukaras, A.D. Zdetsis, M.M. Sigalas, J. Am. Chem. Soc. 134 (2012) 15914–15922.

[25]

S. Scudino, M. Sakaliyska, K.B. Surreddi, J. Eckert, J. Alloys Compd. 483 (2009) 2–7.

[26]

N. Al-Aqeeli, G. Mendoza-Suarez, A. Labrie, R.A.L. Drew, J. Alloys Compd. 400 (2005) 96–99.

[27]

N. Hanada, T. Ichikawa, H. Fujii, J. Phys. Chem. B. 109 (2005) 7188–7194.

[28]

J.F.R.d. Castro, A.R. Yavari, A. LeMoulec, T.T. Ishikawa, W.J.B. F, J. Alloys Compd. 389 (2005) 270–274.

[29]

N.N. Sulaiman, N. Juahir, N.S. Mustafa, F.A. Halim Yap, M. Ismail, J. Energy Chem. 25 (2016) 832–839.

[30]

M. Chen, Y. Pu, Z. Li, G. Huang, X. Liu, Y. Lu, W. Tang, L. Xu, S. Liu, R. Yu, J. Shui, Nano Res. 13 (2020) 2063–2071.

[31]

L. Zeng, Z. Lan, B. Li, H. Liang, X. Wen, X. Huang, J. Tan, H. Liu, W. Zhou, J. Guo, J. Magnes. Alloys 10 (2022) 3628–3640.

[32]

N. Yan, X. Lu, Z. Lu, H. Yu, F. Wu, J. Zheng, X. Wang, L. Zhang, J. Magnes. Alloys 10 (2022) 3542–3552.

[33]

J. Song, J. She, D. Chen, F. Pan, J. Magnes. Alloy 8 (2020) 1–41.

[34]

A.A. Luo, J. Magnes. Alloy 1 (2013) 2–22.

[35]

M.S. Mahmoud, T. Yabe, J. Magnes. Alloy 5 (2017) 430–438.

[36]

J. Huot, J.F. Pelletier, L.B. Lurio, M. Sutton, R. Schulz, J. Alloys Compd. 348 (2003) 319–324.

[37]

G. Liang, J. Huot, S. Boily, A.V. Neste, R. Schulz, J. Alloys Compd. 291 (1999) 295–299.

[38]

J. Cui, J. Liu, H. Wang, L. Ouyang, D. Sun, M. Zhu, X. Yao, J. Mater. Chem. A 2 (2014) 9645–9655.

[39]

P.A. Huhn, M. Dornheim, T. Klassen, R. Bormann, J. Alloys Compd. 404-406 (2005) 499–502.

[40]

P.M. Jardim, M.O.T. da Conceição, M.C. Brum, D.S. dos Santos, Int. J. Hydrog. Energy. 40 (2015) 17110–17117.

[41]

J. Lu, Y.J. Choi, Z.Z. Fang, H.Y. Sohn, E. Roennebro, J. Am. Chem. Soc. 131 (2009) 15843–15852.

[42]

H. Imamura, N. Sakasai, Y. Kajii, J. Alloys Compd. 232 (1996) 218–223.

[43]

J.L. Bobet, E. Grigorova, M. Khrussanova, M. Khristov, P. Stefanov, P. Peshev, D. Radev, J. Alloys Compd. 366 (2004) 298–302.

[44]

M. Zhang, X. Xiao, B. Luo, M. Liu, M. Chen, L. Chen, J. Energy Chem. 46 (2020) 191–198.

[45]

M. Au, J. Mater. Sci. 41 (2006) 5976–5980.

[46]

S. Deledda, A. Borissova, C. Poinsignon, W.J. Botta, M. Dornheim, T. Klassen, J. Alloys Compd. 404-406 (2005) 409–412.

[47]

M.S. Yahya, M. Ismail, J. Energy Chem. 28 (2019) 46–53.

[48]

Y. Wang, Q. Zhang, Y. Wang, L. Jiao, H. Yuan, J. Alloys Compd. 645 (2015) S509–S512.

[49]

J. Zhang, R. Shi, Y. Zhu, Y. Liu, Y. Zhang, S. Li, L. Li, ACS Appl. Mater. Interfaces 10 (2018) 24975–24980.

[50]

M.S. Yahya, M. Ismail, Int. J. Hydrog. Energy 43 (2018) 6244–6255.

[51]

J. Chen, G. Xia, Z. Guo, Z. Huang, H. Liu, X. Yu, J. Mater. Chem. A 3 (2015) 15843–15848.

[52]

L. Zhang, L. Chen, X. Fan, X. Xiao, J. Zheng, X. Huang, J. Mater. Chem. A 5 (2017) 6178–6185.

[53]

L. Zhang, J. Liu, H. Xiao, D. Liu, Y. Qin, H. Wu, H. Li, N. Du, W. Hou, Chem. Eng. J. 250 (2014) 1–5.

[54]

C Li, M. Wei, D.G. Evans, X. Duan, Small 10 (2014) 4469–4486.

[55]

M. Xu, M. Wei, Adv. Funct. Mater. 28 (2018) 1802943.

[56]

Y. Zhao, P. Chen, B. Zhang, D.S. Su, S. Zhang, L. Tian, J. Lu, Z. Li, X. Cao, B. Wang, M. Wei, D.G. Evans, X. Duan, Chem 18 (2012) 11949–11958.

[57]

H. Gao, R. Shi, J. Zhu, Y. Liu, Y. Shao, Y. Zhu, J. Zhang, L. Li, X. Hu, Appl. Surf. Sci. 564 (2021) 150302.

[58]

P. Yao, Y. Jiang, Y. Liu, C. Wu, K.C. Chou, T. Lyu, Q. Li, J. Magnes. Alloys 8 (2020) 461–471.

[59]

G. Liu, Y. Wang, F. Qiu, L. Li, L. Jiao, H. Yuan, J. Mater. Chem. 22 (2012) 22542–22549.

[60]

I.E. Malka, M. Pisarek, T. Czujko, J. Bystrzycki, Int. J. Hydrog. Energy 36 (2011) 12909–12917.

[61]

D. Pukazhselvan, K.S. Sandhya, D. Ramasamy, A. Shaula, D.P. Fagg, Chem. Phys. Chem. 21 (2020) 1195–1201.

[62]

K. Bohmhammel, U. Wolf, G. Wolf, E. Knigsberger, Thermochim. Acta 337 (1999) 195–199.

[63]

J.F. Stampfer, C.E. Holley, J.F. Suttle, J. Am. Chem. Soc. 82 (1960) 3504–3508.

[64]

W. Zhu, S. Panda, C. Lu, Z. Ma, D. Khan, J. Dong, F. Sun, H. Xu, Q. Zhang, J. Zou, ACS Appl. Mater. Interfaces 12 (2020) 50333–50343.

[65]

Q. Kong, H. Zhang, Z. Yuan, J. Liu, L. Li, Y. Fan, G. Fan, B. Liu, ACS Sustain. Chem. Eng. 8 (2020) 4755–4763.

[66]

M. Zhang, X. Xiao, J. Mao, Z. Lan, X. Huang, Y. Lu, B. Luo, M. Liu, M. Chen, L. Chen, Mater. Today Energy 12 (2019) 146–154.

[67]

J. Cui, H. Wang, J. Liu, L. Ouyang, Q. Zhang, D. Sun, X. Yao, M. Zhu, J. Mater. Chem. A 1 (2013) 5603–5611.

[68]

A. Bhatnagar, J.K. Johnson, M.A. Shaz, O.N. Srivastava, J. Phys. Chem. C 122 (2018) 21248–21261.

[69]

L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang, M. Zhu, Adv. Energy Mater. 7 (2017) 1700299.

[70]

Y. Shang, C. Pistidda, G. Gizer, T. Klassen, M. Dornheim, J. Magnes. Alloys 9 (2021) 1837–1860.

[71]

Q. Li, Y. Lu, Q. Luo, X. Yang, Y. Yang, J. Tan, Z. Dong, J. Dang, J. Li, Y. Chen, B. Jiang, S. Sun, F. Pan, J. Magnes. Alloys 9 (2021) 1922–1941.

[72]

Y. Zhu, L. Ouyang, H. Zhong, J. Liu, H. Wang, H. Shao, Z. Huang, M. Zhu, Angew. Chem. Int. Ed. 59 (2020) 8623–8629.

[73]

K. Chen, L. Ouyang, H. Zhong, J. Liu, H. Wang, H. Shao, Y. Zhang, M. Zhu, Green Chem. 21 (2019) 4380–4387.

Journal of Magnesium and Alloys
Pages 4966-4975
Cite this article:
Huang G, Lu Y, Liu X, et al. Layered double hydroxide-derived Mg2Ni/TiH1.5 composite catalysts for enhancing hydrogen storage performance of MgH2. Journal of Magnesium and Alloys, 2024, 12(12): 4966-4975. https://doi.org/10.1016/j.jma.2023.10.003
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return