AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Searching for low-cost LixMOy compounds for compensating Li-loss in sintering of Li-Garnet solid electrolyte

Xiao Huanga,dZhen SongbTongping XiucMichael E. BaddingbZhaoyin Wena,d( )
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
Corning Research Center China, 200 Jinsu Road, Shanghai, 201206, China
Corning Incorporated, Corning, NY, 14831, USA
University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Cubic Li-Garnet Li7La3Zr2O12 (c-LLZO) is one of the promising solid-state electrolyte candidates for the next generation high safety solid-state batteries. However, preparing the electrolyte has many challenges. Li-loss during high temperature sintering is one of them. Mother powder with the same component of green garnet pellets is often used to co-fire with the pellets to compensate the Li-loss. Due to the high weight ratio of rare earth element La and non-recyclability of mother powder, it is worthy to explore low-cost mother powders to replace them. In this paper, low cost compounds such as Li5AlO4, Li2TiO3, Li2SiO3, Li4SiO4 and (Li2O)x-(ZrO2)1-x (x = 0.6–0.8) are investigated for substitution of the mother powder for compensating Li-loss during the sintering of LLZO. Dense Li6.4La3Zr1.4Ta0.6O12 (LLZTO) samples have been prepared by sintering with (Li2O)0.733(ZrO2)0.267 powder at 1150 ℃ for 5 h with the relative density of 95% and conductivity of 5.7 × 10−4 S cm−1 at 25 ℃, which show same performance with LLZTO ceramics sintered with LLZO mother powder.

References

[1]

Kim Y, Jo H, Allen JL, Choe H, Wolfenstine J, Sakamotok J. The effect of relative density on the mechanical properties of hot-pressed cubic Li7La3Zr2O12. J Am Ceram Soc 2016;99:1367–74.

[2]

Wang Q, Jin J, Wu X, Ma G, Yang J, Wen Z. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. Phys Chem Chem Phys 2014;16:21225–9.

[3]

Yao XY, Huang BX, Yin JY, Peng G, Huang Z, Gao C, Liu D, Xu XX. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science. Chin Phys B 2016;25:14.

[4]

Wang Y, Xia Y. Li-O2 batteries: an agent for change. Nat Chem 2013;5:445–7.

[5]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl 2007;46:7778–81.

[6]

Han F, Zhu Y, He X, Mo Y, Wang C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 2016;6:139–59.

[7]

Hu ZL, Liu HD, Ruan HB, Hu R, Su YY, Zhang L. High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceram Int 2016;42:12156–60.

[8]

Rettenwander D, Geiger CA, Tribus M, Tropper P, Amthauer G. A synthesis and crystal chemical study of the fast ion conductor Li7-3xGaxLa3Zr2O12 with x=0.08 to 0.84. Inorg Chem 2014;53:6264–9.

[9]

Rettenwander D, Redhammer G, Preishuber-Pflugl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff MM, Wilkening M, Fleig J, Amthauer G. Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes. Chem Mater 2016;28:2384–92.

[10]

Adams S, Rao RP. Ion transport and phase transition in Li7-xLa3Zr2-xMxO12 (M = Ta5+, Nb5+, x=0, 0.25). J Mater Chem 2012;22:1426–34.

[11]

Huang MA, Shoji M, Shen Y, Nan CW, Munakata H, Kanamura K. Preparation and electrochemical properties of Zr-site substituted Li7La3Zr2-xMxO12 (M = Ta, Nb) solid electrolytes. J Power Sources 2014;261:206–11.

[12]

Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7-XLa3Zr2-XNbXO12 (X=0-2). J Power Sources 2011;196:3342–5.

[13]

Li YT, Han JT, Wang CA, Xie H, Goodenough JB. Optimizing Li+ conductivity in a garnet framework. J Mater Chem 2012;22:15357–61.

[14]

Zhang JJ, Zang X, Wen HJ, Dong TT, Chai JC, Li Y, Chen BB, Zhao JW, Dong SM, Ma J, Yue LP, Liu ZH, Guo XX, Cui GL, Chen LQ. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem 2017;5:4940–8.

[15]

Kokal I, Somer M, Notten PHL, Hintzen HT. Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ionics 2011;185:42–6.

[16]

Kotobuki M, Koishi M. Preparation of Li7La3Zr2O12 solid electrolyte via a sol–gel method. Ceram Int 2014;40:5043–7.

[17]

Rosenkiewitz N, Schuhmacher J, Bockmeyer M, Deubener J. Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO). J Power Sources 2015;278:104–8.

[18]

Wang YX, Yan PF, Xiao J, Lu XC, Zhang JG, Sprenkle VL. Effect of Al2O3 on the sintering of garnet-type Li6.5La3Zr1.5Ta0.5O12. Solid State Ionics 2016;294:108–15.

[19]

Yan XF, Li ZB, Wen ZY, Han WQ. Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J Phys Chem C 2017;121:1431–5.

[20]

Wolfenstine J, Sakamoto J, Allen JL. Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12. J Mater Sci 2012;47:4428–31.

[21]

Wolfenstine J, Jo H, Cho YH, David IN, Askeland P, Case ED, Kim H, Choe H, Sakamoto J. A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ion conductors. Mater Lett 2013;96:117–20.

[22]

Yu S, Schmidt RD, Mendez RG, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 2016;28(1):197–206.

[23]

Ni JE, Case ED, Sakamoto JS, Rangasamy E, Wolfenstine JB. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci 2012;47:7978–85.

[24]

David IN, Thompson T, Wolfenstine J, Allen JL, Sakamoto J. Microstructure and Li-ion conductivity of hot- pressed cubic Li7La3Zr2O12. J Am Ceram Soc 2015;98:1209–14.

[25]

Zhang Y, Chen F, Tu R, Shen Q, Zhang X, Zhang L. Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes. Solid State Ionics 2016;284:53–60.

[26]

Zhang Y, Chen F, Tu R, Shen Q, Zhang L. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. J Power Sources 2014;268:960–4.

[27]

Botros M, Djenadic R, Clemens O, Moller M, Hahn H. Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. J Power Sources 2016;309:108–15.

[28]

Baek S-W, Lee J-M, Kim TY, Song M-S, Park Y. Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J Power Sources 2014;249:197–206.

[29]

Ahmad MM. Enhanced lithium ionic conductivity and study of the relaxation and giant dielectric properties of spark plasma sintered Li5La3Nb2O12 nanomaterials. Ceram Int 2015;41:6398–408.

[30]

Ahmad MM. Lithium ionic conduction and relaxation dynamics of spark plasma sintered Li5La3Ta2O12 garnet nanoceramics. Nanoscale Res Lett 2015;10(1).

[31]

Buannic L, Orayech B, Del Amo JML, Carrasco J, Katcho NA, Aguesse F, Manalastas W, Zhang W, Kilner J, Llordes A. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem Mater 2017;29:1769–78.

[32]

Bernuy-Lopez C, Manalastas W, del Amo JML, Aguadero A, Aguesse F, Kilner JA. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem Mater 2014;26:3610–7.

[33]

Dhivya L, Murugan R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet. ACS Appl Mater Interfaces 2014;6:17606–15.

[34]

Wu JF, Chen EY, Yu Y, Liu L, Wu Y, Pang WK, Peterson VK, Guo X. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl Mater Interfaces 2017;9:1542–52.

[35]

Xia WH, Xu BY, Duan HN, Guo YP, Kang HM, Li H, Liu HZ. Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles. ACS Appl Mater Interfaces 2016;8:5335–42.

[36]

Hummel F, Sastry B, Wotring D. Studies in lithium oxide systems: Ⅱ, Li2O Al2O3–Al2O3. J Am Ceram Soc 1958;41:88–92.

[37]

Kim SS, Sanders TH. Thermodynamic modeling of phase diagrams in binary alkali silicate systems. J Am Ceram Soc 1991;74:1833–40.

[38]

Izquierdo G, West AR. Phase equilibria in the system Li2O-TiO2. Mater Res Bull 1980;15:1655–60.

[39]

Wyers GP, Cordfunke EHP. Phase relations in the system Li2O-ZrO2. JNuM 1989;168:24–30.

[40]

Huang X, Shen C, Rui K, Jin J, Wu MF, Wu XW, Wen ZY. Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet. JOM 2016;68:2593–600.

[41]

Huang X, Xiu T, Badding ME, Wen Z. Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity. Ceram Int 2018;44:5660–7.

[42]

Huang X, Lu Y, Jin J, Gu S, Xiu T, Song Z, Badding ME, Wen Z. Method using water-based solvent to prepare Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces 2018;10:17147–55.

[43]

Lu Y, Huang X, Song Z, Rui K, Wang Q, Gu S, Yang J, Xiu T, Badding ME, Wen Z. Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces. Energy Storage Mater 2018;15:282–90.

[44]

Huang X, Liu C, Lu Y, Xiu T, Jin J, Badding ME, Wen Z. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery. J Power Sources 2018;382:190–7.

[45]

Liu C, Wen Z-Y, Rui K. High ion conductivity in garnet-type F-doped Li7La3Zr2O12. J Inorg Mater 2015;30:995–1000.

[46]

Huang M, Liu T, Deng Y, Geng H, Shen Y, Lin Y, Nan C-W. Effect of sintering temperature on structure and ionic conductivity of Li7-xLa3Zr2O12-0.5x (x=0.5 similar to 0.7) ceramics. Solid State Ionics 2011;204:41–5.

[47]

Katsui H, Goto T. Preparation of cubic and tetragonal Li7La3Zr2O12 film by metal organic chemical vapor deposition. Thin Solid Films 2015;584:130–4.

[48]

Rawlence M, Garbayo I, Buecheler S, Rupp JLM. On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films. Nanoscale 2016;8:14746–53.

[49]

Kazyak E, Chen KH, Wood KN, Davis AL, Thompson T, Bielinski AR, Sanchez AJ, Wang X, Wane CM, Sakamoto J, Dasgupta NP. Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12. Chem Mater 2017;29:3785–92.

[50]

Shin-mura K, Otani Y, Ogawa S, Niwa E, Hashimoto T, Hoshino T, Sasaki K. Synthesis of high-purity Li8ZrO6 powder by solid state reaction under hydrogen atmosphere. Fusion Eng Des 2016;109–111:1739–43.

[51]

Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W. Crystal chemistry and stability of " Li7La3Zr2O12" garnet: a fast lithium-ion conductor. Inorg Chem 2011;50:1089–97.

[52]

Loho C, Djenadic R, Bruns M, Clemens O, Hahn H. Garnet-Type Li7La3Zr2O12 solid electrolyte thin films grown by CO2-laser assisted CVD for all-solid-state batteries. J Electrochem Soc 2017;164: A6131–9.

[53]

Huang ZY, Liu K, Chen LH, Lu YR, Li YT, Wang CA. Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property. Int J Appl Ceram Technol 2017;14:921–7.

[54]

Liu K, Ma J-T, Wang C-A. Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible. J Power Sources 2014;260:109–14.

Journal of Materiomics
Pages 221-228
Cite this article:
Huang X, Song Z, Xiu T, et al. Searching for low-cost LixMOy compounds for compensating Li-loss in sintering of Li-Garnet solid electrolyte. Journal of Materiomics, 2019, 5(2): 221-228. https://doi.org/10.1016/j.jmat.2018.09.004

153

Views

22

Crossref

N/A

Web of Science

26

Scopus

Altmetrics

Received: 11 June 2018
Revised: 17 September 2018
Accepted: 18 September 2018
Published: 19 September 2018
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return