Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Composition dependence of giant electrocaloric effect in PbxSr1-xTiO3 ceramics for energy-related applications

Peng-Zu GeaXiao-Dong JianbXiong-Wei LinbXin-Gui Tanga()Zhi ZhuaQiu-Xiang LiuaYan-Ping JiangaTian-Fu ZhangaSheng-Guo Lub
School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China
School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

PbxSr1-xTiO3 (x = 0.30, 0.35, 0.40, 0.45, 0.50 and 0.55) ceramics were fabricated by a solid-state reaction route. Xeray diffraction data at room temperature show PST samples shift from cubic to tetragonal phase with the increase of Pb2+ content. The microstructures were observed by scanning electron microscopy. Dielectric measurement was employed to investigate the ferroelectriceparaelectric phase transition behavior. Temperature dependent polarizationeelectric field hysteresis loops were conducted to study the electrocaloric effect (ECE) of the ferroelectric ceramics by indirect methods over a wide temperature range. Direct measurement of temperature change (ΔT) at room temperature for all samples can achieve 0.79–1.86 K. What's more, a giant ECE (ΔT = 2.05 K, EC strength (ΔTE) = 0.51 10–6 K m/V, under 40 kV/cm) was obtained in the sample of x = 0.35 near phase transition temperature. Our results suggest that the ceramics are promising cooling materials with excellent EC properties for energy related applications.

References

[1]

Aprea C, Greco A, Maiorino A, Masselli C. A two-dimensional model of a solidstate regenerator based on combined electrocaloric-elastocaloric effect. Energy Procedia 2017;126:337–44.

[2]

Lei T, Engelbrecht K, Nielsen KK, Veje CT. Study of geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration. Appl Therm Eng 2017;111:1232–43.

[3]

Liu Y, Infante IC, Lou X, Bellaiche L, Scott JF, Dkhil B. Giant room-temperature elastocaloric effect in ferroelectric ultrathin films. Adv Mater 2014;26:6132–7.

[4]

Patel S, Chauhan A, Vaish R, Thomas P. Elastocaloric and barocaloric effects in polyvinylidene di-fluoride-based polymers. Appl Phys Lett 2016;108:072903.

[5]

Lu SG, Zhang Q. Electrocaloric materials for solid-state refrigeration. Adv Mater 2010;21:1983–7.

[6]

Molin C, Peräntie J, Goupil FL, Weyland F, Sanlialp M, Stingelin N, Novak N, Lupascu DC, Gebhardt S. Comparison of direct electrocaloric characterization methods exemplified by 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3 multilayer ceramics. J Am Ceram Soc 2017;100:2885–92.

[7]

Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 2006;311:1270–1.

[8]

Peng B, Zhang Q, Lyu Y, Liu L, Lou X, Shaw C, Huang H, Wang Z. Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range. Nanomater Energy 2018;47:285–93.

[9]

Gao H, Hao X, Zhang Q, An S, Kong LB. Thickness-dependent electrocaloric effect of Pb0.82Ba0.08La0.10(Zr0.90Ti0.10)O3 antiferroelectric thick films. J Alloy Comp 2017;690:131–8.

[10]

Liu Y, Dkhil B, Defay E. Spatially resolved imaging of electrocaloric effect and the resultant heat flux in multilayer capacitors. ACS Energy Lett 2016;1:521–8.

[11]

Zhuo F, Li Q, Yan Q, Zhang Y, Wu HH, Xi X, Chu X, Cao W. Temperature induced phase transformations and negative electrocaloric effect in (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric single crystal. J Appl Phys 2017;122:154101.

[12]

Zhang G, Li Q, Gu H, Jiang S, Han K, Gadinski MR, Haque MA, Zhang Q, Wang Q. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration. Adv Mater 2015;27:1450–4.

[13]

Peng B, Fan H, Zhang Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv Funct Mater 2013;23:2987–92.

[14]

Cao WP, Li WL, Dai XF, Zhang TD, Sheng J, Hou YF, Fei WD. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J Eur Ceram Soc 2016;36:593–600.

[15]

Luo L, Chen H, Zhu Y, Li W, Luo H, Zhang Y. Pyroelectric and electrocaloric effect of < 111 > -oriented 0.9PMN–0.1PT single crystal. J Alloy Comp 2011;509:8149–52.

[16]

Ramesh G, Rao MSR, Sivasubramanian V, Subramanian V. Electrocaloric effect in (1–x) PIN-xPT relaxor ferroelectrics. J Alloy Comp 2016;663:444–8.

[17]

Zhou Y, Lin Q, Liu W, Wang D. Compositional dependence of electrocaloric effect in lead-free (1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics. RSC Adv 2016;6:14084–9.

[18]

Wei X, Feng Y, Xi Y. Dielectric relaxation behavior in barium stannate titanate ferroelectric ceramics with diffused phase transition. Appl Phys Lett 2003;83:2031–3.

[19]

Wang Z, Chen XM. Evolution from relaxor-like dielectric to ferroelectric in Ba [(Fe0.5Nb0.5)1– xTix]O3 solid solutions. Solid State Commun 2011;151:708–11.

[20]

Mueller V, Beige H, Abicht HP. Non-Debye dielectric dispersion of barium titanate stannate in the relaxor and diffuse phase-transition state. Appl Phys Lett 2004;84:1341–3.

[21]

Somiya Y, Bhalla AS, Cross LE. Dielectric properties of (Sr0.7Pb0.3)TiO3 ceramics with relaxor-like character. Ferroelectrics 2017;507:43–57.

[22]

Pontes FM, Leal SH, Leite ER, Longo E, Pizani PS, Chiquito AJ, Machado MAC, Varela JA. Absence of relaxor-like ferroelectric phase transition in (Pb, Sr)TiO3 thin films. Appl Phys A 2005;80:813–7.

[23]

Yang J, Chu J, Shen M. Analysis of diffuse phase transition and relaxorlike behaviors in Pb0.5Sr0.5TiO3 films through dc electric-field dependence of dielectric response. Appl Phys Lett 2007;90:242908.

[24]

Zhang TF, Huang XX, Tang XG, Jiang YP, Liu QX, Lu B, Lu SG. Enhanced electrocaloric analysis and energy-storage performance of lanthanum modified lead titanate ceramics for potential solid-state refrigeration applications. Sci Rep 2018;8:396.

[25]

Isupov VA. Some problems of diffuse ferroelectric phase transitions. Ferroelectrics 1989;90:113–8.

[26]

Nomura S, Sawada S. Dielectric properties of lead·strontium titanate. J Phys Soc Jpn 1955;10:108–11.

[27]

Somiya Y, Bhalla AS, Cross LE. Study of (Sr, Pb)TiO3 ceramics on dielectric and physical properties. IntJ Inorg Mater 2001;3:709–14.

[28]

Rivera I, Kumar A, Mendoza F, Katiyar RS. Investigation of dielectric, electrical and optical properties of Pb0.5Sr0.5TiO3 ceramics. Physica B 2008;403:2423–30.

[29]

Huang XX, Zhang TF, Tang XG, Jiang YP, Liu QX, Feng ZY, Zhou QF. Dielectric relaxation and pinning phenomenon of (Sr,Pb)TiO3 ceramics for dielectric tunable device application. Sci Rep 2016;6:31960.

[30]

Chen HW, Yang CR, Zhang JH, Pei YF, Zhao Z. Microstructure and antiferroelectric-like behavior of PbxSr1–xTiO3 ceramics. J Alloy Comp 2009;486:615–20.

[31]

Wu P, Lou X, Li J, Li T, Gao H, Wu M, Wang S, Wang X, Bian J, Hao X. Direct and indirect measurement of electrocaloric effect in lead-free (100-x)Ba(Hf0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics near multi-phase boundary. J Alloy Comp 2017;725:275–82.

[32]

Lu SG, Rožič B, Zhang QM, Kutnjak Z, Li X, Furman E, Gorny LJ, Lin M, Malič B, Kosec M, Blinc R, Pirc R. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl Phys Lett 2010;97:162904.

[33]

Neese B, Lu SG, Chu B, Zhang QM. Electrocaloric effect of the relaxor ferroelectric poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl Phys Lett 2009;94:042910.

[34]

Correia TM, Young JS, Whatmore RW, Scott JF, Mathur ND, Zhang Q. Investigation of the electrocaloric effect in a PbMg2/3 Nb1/3O3-PbTiO3 relaxor thin film. Appl Phys Lett 2009;95:182904.

[35]

Dunne LJ, Valant M, Axelsson AK, Manos G, Alford NM. Statistical mechanical lattice model of the dual-peak electrocaloric effect in ferroelectric relaxors and the role of pressure. J Phys D: Appl Phys 2011;44:375404.

[36]

Shi YP, Soh AK. Modeling of enhanced electrocaloric effect above the Curie temperature in relaxor ferroelectrics. Acta Mater 2011;59:5574–83.

[37]

Peräntie J, Tailor HN, Hagberg J, Jantunen H, Ye ZG. Electrocaloric properties in relaxor ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 system. J Appl Phys 2013;114:174105.

[38]
Peräntie J, Correia T, Hagberg J, Uusimäki A. Electrocaloric effect in relaxor ferroelectric-based materials. In: Correia T, Zhang Q, editors. Electrocaloric materials. Berlin, Heidelberg: Springer; 2014. p. 47–89.
[39]

Kriaa I, Maalej A, Khemakhem H. Electrocaloric study effect in the relaxor ferroelectric ceramic 0.9(0.75PMN-0.25PT)-0.1PS. J Electron Mater 2017;46:2529–32.

[40]

Zhu Z, Tang XG, Jiang YP, Liu QX, Zhang TF, Feng ZY. Giant electrocaloric effect in lead zinc niobate titanate single crystal. J Alloy Comp 2017;710:297–301.

[41]

Goupil FL, Axelsson AK, Dunne LJ, Valant M, Manos G, Lukasiewicz T, Dec J, Berenov A, Alford NM. Anisotropy of the electrocaloric effect in lead-free relaxor ferroelectrics. Adv. Energy Mater. 2014;4:1301688.

[42]

Sanlialp M, Luo Z, Shvartsman VV, Wei X, Liu Y, Dkhil B, Lupascu DC. Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1-x)O3 ceramics. Appl Phys Lett 2017;111:173903.

[43]

Ge PZ, Tang XG, Liu QX, Jiang YP, Li WH, Luo J. Energy storage properties and electrocaloric effect of Ba0.65Sr0.35TiO3 ceramics near room temperature. J Mater Sci Mater Electron 2018;29:1075–81.

[44]

Zhou Y, Lin Q, Liu W, Wang D. Compositional dependence of electrocaloric effect in lead-free (1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics. RSC Adv 2016;6:14084–9.

[45]

Geng WP, Liu Y, Meng XJ, Bellaiche L, Scott JF, Dkhil B, Jiang AQ. Giant negative electrocaloric effect in antiferroelectric La doped Pb(ZrTi)O3 thin films near room temperature. Adv Mater 2015;27:3165–9.

[46]

Bai Y, Han X, Ding K, Qiao LJ. Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1-xSrxTiO3 ceramics. Appl Phys Lett 2013;103:162902.

[47]

Ang C, Cross LE, Yu Z, Guo R, Bhalla AS, Hao JH. Dielectric loss and defect mode of SrTiO3 thin films under direct-current bias. Appl Phys Lett 2001;78:2754–6.

[48]

Yu Z, Ang C, Guo R, Bhalla AS. Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3 ceramics under dc electric field. Appl Phys Lett 2002;81:1285–7.

[49]

Tang XG, Chew KH, Wang J, Chan HL. Dielectric tunability of (Ba0.90Ca0.10)(-Ti0.75Zr0.25)O3 ceramics. Appl Phys Lett 2004;85:991–3.

[50]

Tang XG, Liu QX, Wang J, Chan HLW. Electric-field dependence of dielectric properties of sol-gel derived Ba(Zr0.2Ti0.8)O3 ceramics. Appl Phys A 2009;96:945–52.

[51]

Peng B, Zhang Q, Ke S, Li T, Niu H, Zeng X, Fan H, Huang H. Large electrocaloric strength in the (100)-oriented relaxor ferroelectric Pb[(Ni1/3Nb2/3)0.6Ti0.4]O3 single crystal at near morphotropic phase boundary. Ceram Int 2015;41:9344–9.

[52]
Hilt MG. A solid-state heat pump using electrocaloric ceramic elements. PhD Thesis. State College, PA: The Pennsylvania State University; 2009.
[53]

Koruza J, Rožič B, Cordoyiannis G, Malič B, Kutnjak Z. Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Appl Phys Lett 2015;106:202905.

[54]

Molin C, Sanlialp M, Shvartsman VV, Lupascu DC, Neumeister P, Schönecker A, € Gebhardt S. Effect of dopants on the electrocaloric effect of 0.92Pb(Mg1/3Nb2/3)O3–0.08PbTiO3 ceramics. J Eur Ceram Soc 2015;35:2065–71.

[55]

Molin C, Gebhardt S. PMN-8PT device structures for electrocaloric cooling applications. Ferroelectrics 2016;498:111–9.

[56]

Hirose S, Usui T, Crossley S, Nair B, Ando A, Moya X, Mathur ND. Progress on electrocaloric multilayer ceramic capacitor development. Apl Mater 2016;4:064105.

[57]

Moya X, Stern-Taulats E, Crossley S, Gonzalez-Alonso D, Kar-Narayan S, Planes A, Manosa L, Mathur ND. Giant electrocaloric strength in single crystal BaTiO3. Adv Mater 2013;25:1360–5.

[58]

Goupil FL, Axelsson AK, Valant M, Lukasiewicz T, Dec J, Berenov A, Alford NM. Effect of Ce doping on the electrocaloric effect of SrxBa1-xNb2O6 single crystals. Appl Phys Lett 2014;104:222911.

[59]

Lu SG, Rožič B, Zhang QM, Kutnjak Z, Pirc R, Lin M, Li X, Gorny L. Comparison of directly and indirectly measured electrocalaoric effect in relaxor ferroelectric polymers. Appl Phys Lett 2010;97:202901.

[60]

Li XY, Qian XS, Lu SG, Cheng JP, Fang Z, Zhang QM. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Appl Phys Lett 2011;99:052907.

[61]

Zhang G, Zhang X, Yang T, Li Q, Chen LQ, Jiang S, Wang Q. Colossal roomtemperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano 2015;9:7164–74.

[62]

Qiu JH, Ding JN, Yuan NY, Wang XQ. Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films. Chin Phys B 2013;22:017701.

[63]

Jian XD, Lu B, Li DD, Yao YB, Tao T, Liang B, Guo JH, Zeng YJ, Lu SG. Direct measurement of large electrocaloric effect in Ba(ZrxTi1-x)O3 Ceramics. ACS Appl Mater Interfaces 2018;10:4801–7.

[64]

Goupil FL, Berenov A, Axelsson AK, Valant M, Alford NM. Direct and indirect electrocaloric measurements on < 001 >-PbMg1/3Nb2/3O3-30PbTiO3 single crystals. J Appl Phys 2012;111:124109.

[65]

Bai Y, Zheng GP, Shi SQ. Direct measurement of giant electrocaloric effect in BaTiO3 multilayer thick film structure beyond theoretical prediction. Appl Phys Lett 2010;96:192902.

[66]

Sanlialp M, Shvartsman VV, Acosta M, Lupascu DC. Electrocaloric effect in Ba(Zr,Ti)O3-(Ba,Ca)TiO3 ceramics measured directly. J Am Ceram Soc 2016;99:4022–30.

Journal of Materiomics
Pages 118-126
Cite this article:
Ge P-Z, Jian X-D, Lin X-W, et al. Composition dependence of giant electrocaloric effect in PbxSr1-xTiO3 ceramics for energy-related applications. Journal of Materiomics, 2019, 5(1): 118-126. https://doi.org/10.1016/j.jmat.2018.10.002
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return