AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Design, synthesis and performance of Ba-doped derivatives of SrMo0.9Fe0.1O3-δ perovskite as anode materials in SOFCs

S. SydyknazaraV. CascosaM.T. Fernández-DíazbJ.A. Alonsoa,( )
Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049, Madrid, Spain
Institut Laue Langevin, BP 156X, Grenoble, F-38042, France

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The oxides SrMo1-xFexO3-δ (x = 0.1 and 0.2) have recently been described as excellent anode materials for solid-oxide fuel cells at intermediate temperatures (IT-SOFC) with LSGM as the electrolyte. In this work we have partially replaced Sr by Ba in a compound of formula Sr0.9Ba0.1Mo0.9Fe0.1O3-δ, in order to expand the unit-cell size and thereby improve the ionic diffusion of O2− ions through the crystal lattice. The anode materials must be stable under reducing conditions, since they work in the presence of the fuel (H2) at elevated temperatures. These anodes are inspired in the SrMoO3 perovskite, which contains Mo4+ ions, stable in very reducing conditions. This novel oxide has been structurally characterized from x-ray (XRD) and neutron powder diffraction (NPD) data; the structure is defined at room temperature in the Pm-3m space group, and shows oxygen vacancies, necessary for the performance of this material as mixed ionic-electronic (MIEC) oxide. In single test cells supported on LSGM, the materials generated output powers close to 500 mW/cm2 at 850 °C using pure H2 as fuel. The thermal expansion is linear, with TEC = 10.93 × 10−6 K−1. The chemical compatibility with the LSGM electrolyte was also verified.

References

[1]
SunChStimmingURecent anode advances in solid oxide fuel cellsJ Power Sources200717124760

Sun Ch, Stimming U. Recent anode advances in solid oxide fuel cells. J Power Sources 2007;171:247–60.

10.1016/j.jpowsour.2007.06.086
[2]
YangQChaiFMaChSunChShiSChenLEnhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cellsJ Mater Chem2016418031610.1039/C6TA08031F

Yang Q, Chai F, Ma Ch, Sun Ch, Shi S, Chen L. Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cells. J Mater Chem 2016;4:18031–6.

[3]

Yang Q, Chen J, Sun Ch, Chen L. Direct operation of methane fueled solid oxide fuel cells with Ni cermet anode via Sn modification. Int J Hydrogen Energy 2016;41:11391–8.

[4]

Y W, Zhu Ch, Ma Z, Sun Ch, Chen L, Chen Y. MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite anode for solid oxide fuel cells. Int J Hydrogen Energy 2014;39:14411–5.

[5]

Chen W, Zuo YB, Chen CS, Winnubst AJA. Effect of Zr4+ doping on the oxygen stoichiometry and phase stability of SrCo0.8Fe0.2O3-δ oxygen separation membrane. Solid State Ionics 2010;181:971–5.

[6]

Li S, Jin W, Huang P, Xu N, Shi J. Comparison of oxygen permability and stability of perovskite type La0.2A0.8Co0.2Fe0.8O3-δ (A= Sr, Ba, Ca) membranes. Ind Eng Chem Res 1999;38:2963–72.

[7]

Kharton VV, Viskuo AP, Yaremchenko AA, Baker RT, Gharbage B, Mather GC, Figueiredo FM, Naumovich EN, Marques FMB. Ionic conductivity of La(Sr)Ga(Mg,M)O3-δ (M=Ti, Cr, Fe, Co, Ni): effects of transition metal dopants. Solid State Ionics 2000;132:119–30.

[8]
DongXLuiZHeYJinWXuNSrAl2O4- improved SrCo0.8Fe0.2O3-δ mixed conducting membrane for effective production of hydrogen from methaneJ Membr Sci200933310916

Dong X, Lui Z, He Y, Jin W, Xu N. SrAl2O4- improved SrCo0.8Fe0.2O3-δ mixed conducting membrane for effective production of hydrogen from methane. J Membr Sci 2009;333:109–16.

10.1016/j.memsci.2009.01.023
[9]
Martínez-CoronadoRAlonsoJAAguaderoAFernández-DíazMTOptimized energy conversion efficiency in solid-oxide fuel cells implementing SrMo1-xFexO3-δ perovskites as anodesJ Power Sources20122081538

Martínez-Coronado R, Alonso JA, Aguadero A, Fernandez-Díaz MT. Optimized energy conversion efficiency in solid-oxide fuel cells implementing SrMo1-xFexO3-δ perovskites as anodes. J Power Sources 2012;208:153–8.

10.1016/j.jpowsour.2012.02.002
[10]
Martinez-CoronadoRAlonsoJAFernandez-DiazMTSrMo0.9Co0.1O3-delta: a potential anode for intermediate-temperature solid-oxide fuel cells (IT-SOFC)J Power Sources20142587682

Martinez-Coronado R, Alonso JA, Fernandez-Diaz MT. SrMo0.9Co0.1O3-delta: a potential anode for intermediate-temperature solid-oxide fuel cells (IT-SOFC). J Power Sources 2014;258:76–82.

10.1016/j.jpowsour.2014.02.031
[11]

Cascos V, Troncoso L, Alonso JA, Fernandez-Diaz MT. Design of new Ga-doped SrMoO3 performing as anode materials in SOFC. Renew Energy 2017;111:476–83.

[12]
CascosVAlonsoJALow temperature phase transitions of the SrMo1-xMxO3-delta (M = Mg and Ga) perovskitesJ Alloy Comp20177224828

Cascos V, Alonso JA. Low temperature phase transitions of the SrMo1-xMxO3-delta (M = Mg and Ga) perovskites. J Alloy Comp 2017;722:482–8.

10.1016/j.jallcom.2017.06.026
[13]
HayashiSAokiRNakamuraTMetallic conductivity in perovskite-type compounds AMoO3 (A = Ba, Sr, Ca) down to 2.5 KMater Res Bull19791440913

Hayashi S, Aoki R, Nakamura T.Metallic conductivity in perovskite-type compounds AMoO3 (A = Ba, Sr, Ca) down to 2.5 K. Mater Res Bull 1979;14:409–13.

10.1016/0025-5408(79)90107-7
[14]
KuboJUedaWCatalytic behavior of AMoOx (A = Ba, Sr) in oxidation of 2 propanolMater Res Bull20094490612

Kubo J, Ueda W. Catalytic behavior of AMoOx (A = Ba, Sr) in oxidation of 2 propanol. Mater Res Bull 2009;44:906–12.

10.1016/j.materresbull.2008.08.013
[15]
MizoguchiHElectronic structure of polycrystalline AMoO3 (A=Sr or Ba)J Appl Phys20008565025

Mizoguchi H, et al. Electronic structure of polycrystalline AMoO3 (A=Sr or Ba). J Appl Phys 2000;85:6502–5.

10.1063/1.370288
[16]

Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993;192:55–69.

[17]

Tietz F. Thermal expansion of SOFC materials. Solid State Ionics 1999;5:129–39.

Journal of Materiomics
Pages 280-285
Cite this article:
Sydyknazar S, Cascos V, Fernández-Díaz M, et al. Design, synthesis and performance of Ba-doped derivatives of SrMo0.9Fe0.1O3-δ perovskite as anode materials in SOFCs. Journal of Materiomics, 2019, 5(2): 280-285. https://doi.org/10.1016/j.jmat.2018.12.001

116

Views

5

Crossref

N/A

Web of Science

8

Scopus

Altmetrics

Received: 30 October 2018
Revised: 26 November 2018
Accepted: 05 December 2018
Published: 06 December 2018
© 2018 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return