AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Low-firing, temperature stable and improved microwave dielectric properties of ZnO-TiO2-Nb2O5 composite ceramics

Hongyu Yanga,bShuren Zhanga,b( )Yawei Chena,bHongcheng Yanga,bZixuan Fanga,bYing Yuana,bEnzhu Lia,b( )
National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054, China
Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 610054, China
Show Author Information

Graphical Abstract

Abstract

This article presents low-firing, low-loss and temperature stable ZnO-TiO2-Nb2O5 microwave dielectric composite ceramics with the assistance of lithium borosilicate (LBS) and zinc borosilicate (ZBS) glass frits. There is a liquid phase (eutectic mixture) generated by LBS (ZBS) glass, and solid particles could be wetted and dissolved. Therefore, the migrations and rearrangements of particles could be performed. Besides, compared with ceramics undoped with glass frits, lower activation energies (Ea) of ceramics doped with LBS and ZBS glass suggest that the low-temperature sintering behavior is easier to carry out. The results indicated that LBS and ZBS glass both are effective sintering aids to accelerate the sintering process and improve the microwave dielectric properties of composite ceramics by controlling the phase compositions under low temperature. Combination great properties of ZnO-TiO2-Nb2O5 ceramics were obtained when sintered at 900 ℃ for 4 h: εr = 36.7, Q × f = 20,000 GHz, τf = 7 ppm/oC.

References

[1]

Sebastian MT, Jantunen H. Low loss dielectric materials for LTCC applications: a review. Int Mater Rev 2008;53: 57-90. https://doi.org/10.1179/174328008X277524.

[2]

Fang Z, Tang B, Yuan Y, Zhang X, Zhang S. Structure and microwave dielectric properties of the Li2/3(1–x)Sn1/3(1–x)MgxO systems (x = 0-4/7). J Am Ceram Soc 2018;101: 252-64. https://doi.org/10.1111/jace.15120.

[3]

Fang Z, Tang B, Si F, Zhang S. Temperature stable and high-Q microwave dielectric ceramics in the Li2Mg3–xCaxTiO6 system (x = 0.00-0.18). Ceram Int 2017;43: 1682-7. https://doi.org/10.1016/j.ceramint.2016.08.055.

[4]

Zhou D, Pang LX, Wang DW, Reaney IM. BiVO4 based high k microwave dielectric materials: a review. J Mater Chem C 2018;6: 9290-313. https://doi.org/10.1039/c8tc02260g.

[5]

Guo HH, Zhou D, Pang LX, Su JZ. Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss. J Materiomics 2018;4: 368-82. https://doi.org/10.1016/j.jmat.2018.09.002.

[6]

Fang Z, Tang B, Si F, Zhang S. Low temperature sintering of high permittivity Ca-Li-Nd-Ti microwave dielectric ceramics with BaCu(B2O5) additives. J Alloy Comp 2017;693: 843-52. https://doi.org/10.1016/j.jallcom.2016.09.292.

[7]

Sebastian MT, Wang H, Jantunen H. Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid. St. M 2016;20: 151-70. https://doi.org/10.1016/j.cossms.2016.02.004.

[8]

Zhou D, Pang LX, Guo J, Qi ZM, Shao T, Wang QP, et al. Influence of Ce substitution for Bi in BiVO4 and the impact on the phase evolution and microwave dielectric properties. Inorg Chem 2014;53: 1048-55. https://doi.org/10.1021/ic402525w.

[9]

Pang LX, Zhou D, Qi ZM, Liu WG, Yue ZX, Reaney IM. Structure-property relationships of low sintering temperature scheelite-structured (1-x)BiVO4-xLaNbO4 microwave dielectric ceramics. J Mater Chem C 2017;5: 2695-701. https://doi.org/10.1039/C6TC05670A.

[10]

Zhou D, Guo D, Li WB, Pang LX, Yao X, Wang DW, et al. Novel temperature stable high-εr microwave dielectrics in the Bi2O3-TiO2-V2O5 system. J Mater Chem C 2016;4: 5357-62. https://doi.org/10.1039/C6TC01431C.

[11]

Pang LX, Zhou D, Qi ZM, Yue ZX. Influence of W substitution on crystal structure, phase evolution and microwave dielectric properties of (Na0.5Bi0.5) MoO4 ceramics with low sintering temperature. Sci Rep 2017;7: 3201-6. https://doi.org/10.1038/s41598-017-03620-0.

[12]

Duan S, Li E, Yang H, Tang B, Yuan Y, He H, et al. Low temperature sintering kinetics of BaZn2Ti4O11 dielectric ceramic in the presence of a liquid phase. J Alloy Comp 2017;699: 983-90. https://doi.org/10.1016/j.jallcom.2016.11.426.

[13]

Li E, Zhang P, Duan S, Wang J, Yuan Y, Tang B. Low temperature sintering of low-loss ZnTiO3 microwave dielectric ceramics with Zn-B-Si glass. J Alloy Comp 2015;647: 866-72. https://doi.org/10.1016/j.jallcom.2015.06.172.

[14]

Yang H, Li E, Duan S, He H, Zhang S. Structure, microwave properties and low temperature sintering of Ta2O5 and Co2O3 codoped Zn0.5Ti0.5NbO4 ceramics. Mater Chem Phys 2017;199: 43-53. https://doi.org/10.1016/j.matchemphys.2017.06.025.

[15]

Kim DW, Kim JH, Kim JR, Hong KS. Phase constitutions and microwave dielectric properties of Zn3Nb2O8-TiO2. Jpn J Appl Phys 2001;40: 5994-8. https://doi.org/10.1143/JJAP.40.5994.

[16]

Tseng CF. Microwave dielectric properties of low loss microwave dielectric ceramics: a0.5Ti0.5NbO4 (A=Zn, Co). J Eur Ceram Soc 2014;34: 3641-8. https://doi.org/10.1016/j.jeurceramsoc.2014.06.010.

[17]

Kim ES, Dong HK. Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi1–xO2 (B5+=Nb, Ta) ceramics. Ceram Int 2008;34: 883-8. https://doi.org/10.1016/j.ceramint.2007.09.049.

[18]

Ruan P, Liu P, Guo BC, Fu ZF. Low temperature reaction-sintering and microwave dielectric properties of ZnO-Nb2O5-2TiO2 ceramics. J Mater Sci Mater Electron 2016;27: 10622-6. https://doi.org/10.1007/s10854-016-5158-1.

[19]

Wu S, Luo J. Mg-substituted ZnNb2O6-TiO2 composite ceramics for RF/microwaves ceramic capacitors. J Alloy Comp 2011;509: 8126-9. https://doi.org/10.1016/j.jallcom.2011.05.079.

[20]

Yang H, Zhang S, Yang H, Zhang X, Li E. Structural evolution and microwave dielectric properties of xZn0.5Ti0.5NbO4-(1-x)Zn0.15Nb0.3Ti0.55O2 ceramics. Inorg Chem 2018;57: 8264-75. https://doi.org/10.1021/acs.inorgchem.8b00873.

[21]
Larson AC, Von Dreele RB. General structure analysis system (GSAS). Los alamos national laboratory report LAUR 86-748. Washington, DC: U.S. Department of Energy; 2004.
[22]

Toby B. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 2001;34:210-3. https://doi.org/10.1107/S0021889801002242.

[23]

Eldem M, Orton B, Whitaker A. Phase equilibria in the system ZnO-B2O3-SiO2 at 950 ℃. J Mater Sci 1987;22:4139-43. https://doi.org/10.1007/BF01133370.

[24]

Valant M, Suvorov D, Pullar RC, Sarma K, Alford NM. A mechanism for low-temperature sintering. J Eur Ceram Soc 2006;26:2777-83. https://doi.org/10.1016/j.jeurceramsoc.2005.06.026.

[25]

Wu SP, Ni J, Luo JH, Ding XH. Preparation of ZnNb2O6-TiO2 microwave dielectric ceramics for multi-layer cofired component. Mater Chem Phys 2009;117:307-12. https://doi.org/10.1016/j.matchemphys.2009.06.005.

[26]

Wang D, Zhou D, Zhang S, Vardaxoglou Y, Whittow WG, Cadman D, et al. Cold-sintered temperature stable Na0.5Bi0.5MoO4-Li2MoO4 microwave composite ceramics. ACS Sustainable Chem Eng 2018;6:2438-44. https://doi.org/10.1021/acssuschemeng.7b03889.

[27]

Xing C, Li J, Wang J, Chen H, Qiao H, Yin X, et al. Internal relations between crystal structures and intrinsic properties of nonstoichiometric Ba1+xMoO4 ceramics. Inorg Chem 2018;57:7121-8. https://doi.org/10.1021/acs.inorgchem.8b00841.

[28]

Fang Z, Tang B, Si F, Li E, Yang H, Zhang S. Phase evolution, structure and microwave dielectric properties of Li2+xMg3SnO6 (x = 0.00-0.12) ceramics. Ceram Int 2017;43:13645-52. https://doi.org/10.1016/j.ceramint.2017.07.074.

[29]

Yoon SO, Shim SH, Kim KS, Park JG, Kim S. Low-temperature preparation and microwave dielectric properties of ZBS glass-Al2O3 composites. Ceram Int 2009;35:1271-5. https://doi.org/10.1016/j.ceramint.2008.04.003.

[30]

Yang H, Li E, Yang H, He H, Zhang S. Synthesis of Zn0.5Ti0.5NbO4 microwave dielectric ceramics with Li2O-B2O3-SiO2 glass for LTCC application. Int J Appl Glass Sci 2017:1-11. https://doi.org/10.1111/ijag.12334.

[31]

Pullar RC, Breeze JD, Alford NM. Characterization and microwave dielectric properties of M2+Nb2O6 ceramics. J Am Ceram Soc 2005;88:2466-71. https://doi.org/10.1111/j.1551-2916.2005.00458.x.

[32]

Ding S, Yao Y, Yang Y. Dielectric properties of B2O3-doped BiNbO4 ceramics. Ceram Int 2004;30:1195-8. https://doi.org/10.1016/j.ceramint.2003.12.030.

[33]

Guo M, Gong S, Dou G, Zhou D. A new temperature stable microwave dielectric ceramics: ZnTiNb2O8 sintered at low temperatures. J Alloy Comp 2011;509:5988-95. https://doi.org/10.1016/j.jallcom.2011.01.095.

[34]

Zhou D, Dou G, Guo M, Gong S. Low temperature sintering and microwave dielectric properties of ZnTiNb2O8 ceramics with BaCu(B2O5) additions. Mater Chem Phys 2011;130:903-8. https://doi.org/10.1016/j.matchemphys.2011.08.010.

[35]

Kim D, Hong HB, Hong KS. Structural transition and microwave dielectric properties of ZnNb2O6-TiO2 sintered at low temperatures. Jpn J Appl Phys 2002;41:1465-9. https://doi.org/10.1143/JJAP.41.1465.

[36]

Kim JR, Kim DW, Yoon SH, Hong KS. Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with B2O3 and CuO additions. J Electroceram 2006;17:439-43. https://doi.org/10.1007/s10832-006-0453-5.

[37]

Kim DW, Kim JR, Yoon SH, Hong KS, Kim CK. Microwave dielectric properties of low-fired Ba5Nb4O15. J Am Ceram Soc 2002;85:2759-62. https://doi.org/10.1111/j.1151-2916.2002.tb00525.x.

[38]

Liu P, Ogawa H, Soo Kim E, Kan A. Microwave dielectric properties of low-temperature sintered Ca[(Li1/3Nb2/3)Ti]O3–δ ceramics. J Eur Ceram Soc 2004;24:1761-4. https://doi.org/10.1016/S0955-2219(03)00549-1.

[39]

Zeng Q, Zhang N, Zhou Y, Zhan W, Hong X. Effects of ZnO and B2O3 on the microstructure and microwave dielectric properties of 5Li2O-1Nb2O5-5TiO2 ceramics. Int J Appl Ceram Technol 2014;11:200-6. https://doi.org/10.1111/ijac.12003.

[40]

Lee HR, Lee BD, Yoon KH. Microstructures and dielectric properties of low cemperature cofired BiNbO4-ZnNb2O6 ceramics with Ag-electrode. Jpn J Appl Phys 2005;44:1333-6. https://doi.org/10.1143/JJAP.44.1333.

[41]

Ha JY, Choi JW, Kang CY, Yoon SJ, Choi DJ, Kim HJ. Low temperature Sintering of Ca[(Li1/3Nb2/3)1-xTix]O3–δ based microwave dielectric ceramics with glass frit. Jpn J Appl Phys 2005;44:1322-5. https://doi.org/10.1143/JJAP.44.1322.

[42]

Zou D, Zhang Q, Yang H, Li S. Low temperature sintering and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics for LTCC applications. J Eur Ceram Soc 2008;28:2777-82. https://doi.org/10.1016/j.jeurceramsoc.2008.04.021.

[43]

Jeong BJ, Joung MR, Kweon SH, Kim JS, Nahm S, Choi JW, et al. Microstructures and microwave dielectric properties of Bi2O3-deficient Bi12SiO20 ceramics. J Am Ceram Soc 2013;96:2225-9. https://doi.org/10.1111/jace.12323.

Journal of Materiomics
Pages 471-479
Cite this article:
Yang H, Zhang S, Chen Y, et al. Low-firing, temperature stable and improved microwave dielectric properties of ZnO-TiO2-Nb2O5 composite ceramics. Journal of Materiomics, 2019, 5(3): 471-479. https://doi.org/10.1016/j.jmat.2019.01.003

178

Views

21

Crossref

N/A

Web of Science

24

Scopus

Altmetrics

Received: 04 November 2018
Revised: 03 January 2019
Accepted: 09 January 2019
Published: 11 January 2019
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return