Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Low-temperature sintered (Na1/2Bi1/2)TiO3-based incipient piezoceramics for co-fired multilayer actuator application

Pengyuan FanaYangyang ZhangbShan-Tao ZhangcBing XieaYiwei ZhuaMohsin Ali MarwataWeigang MaaKai LiuaLiang ShuaHaibo Zhanga,d()
School of Materials Science and Engineering, State Key Laboratory of Material Processing, Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
Information Engineering Institute, Huanghe Science and Technology College, Zhengzhou, 450000, China
National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
Research Centre for Functional Ceramics, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Low-temperature sintered (Na1/2Bi1/2)0.935Ba0.065Ti0.975(Fe1/2Nb1/2)0.025O3 (NBT-BT-0.025FN) lead-free incipient piezoceramics were investigated using high-purity Li2CO3 as sintering aids. With the ≤0.5 wt% Li2CO3 addition, the introduced Li+ cations precede to enter the A-sites of the perovskite lattice to compensate for the A-site deficiencies. Once the addition exceeds 0.5 wt%, the excess Li+ cations will occupy B-sites and give rise to the generation of oxygen vacancies, which accelerate the mass transport and thus lower the sintering temperature effectively from 1100 ℃ down to 925 ℃. It was also found that a small amount of Li+ addition has little effect on the phase structure and electromechanical properties of the system, but overweight seriously disturbs these characteristics because of the large lattice distortion. The sintered NBT-BT-0.025FN incipient piezoceramics with 1.25 wt% Li2CO3 addition at 925 ℃ provides a large strain of 0.33% and a corresponding large signal piezoelectric coefficient d33 of 550 pm/V at 60 kV/cm, indicating this system is a very promising candidate for lead-free co-fired multilayer actuator application.

References

[1]

Akse E, Jones JL. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 2010;10(3): 1935-54.

[2]

Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev 2017;4(4): 041305.

[3]

Jin L, Li F, Zhang SJ. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 2014;97(1): 1-27.

[4]

Xie B, Zhang H, Zhang Q, Zang J, Yang C, Wang Q, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. J Mater Chem 2017;5(13): 6070-8.

[5]

Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc 1999;82(4): 797-818.

[6]

Zhu Y, Zhang Y, Xie B, Fan P, Marwat MA, Ma W, et al. Large electric fieldinduced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 lead-free piezoceramics. Ceram Int 2018;44(7): 7851-7.

[7]

Wu J, Fan Z, Xiao D, Zhu J, Wang J. Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 2016;84: 335-402.

[8]

Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 2015;115(7): 2559-95.

[9]

Rödel J, Webber KG, Robert D, Wook J, Masahiko K, Dragan D. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 2015;35(6): 1659-81.

[10]

Jin L, Huo RJ, Guo RP, Li F, Wang DW, Tian Y, et al. Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl Mater Interfaces 2016;8(45): 31109-19.

[11]

Wang K, Hussain A, Jo W, Rödel J, Viehland DD. Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics. J Am Ceram Soc 2012;95(7): 2241-7.

[12]

Krauss W, Schütz D, Naderer M, Orosel D, Reichmann K. BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process. J Eur Ceram Soc 2011;31(9): 1857-60.

[13]

Tong XY, Zhou JJ, Wang K, Liu H, Fang JZ. Low-temperature sintered Bi0.5Na0.5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J Eur Ceram Soc 2017;37(15): 4617-23.

[14]

Somwan S, Funsueb N, Limpichaipanit A, Ngamjarurojana A. Influence of low external magnetic field on electric field induced strain behavior of 9/70/30, 9/65/35 and 9/60/40 PLZT ceramics. Ceram Int 2016;42(11): 13223-31.

[15]

Jo W, Dittmer R, Acosta M, Zang JD, Groh C. Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J Electroceram 2008;29(1): 71-93.

[16]

Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rödel J. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 2007;91(11): 112906.

[17]

Malik RA, Kang JK, Hussain A, Ahn CW, Han HS, Lee JS. High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3-SrTiO3 incipient piezoelectric ceramics. APEX 2014;7(6): 061502.

[18]

Zhang HB, Jiang SL, Xiao JZ, Kajiyoshi K. Piezoelectric and dielectric aging of lead free piezoelectric Bi0.5(Na, K)0.5TiO3 thick films. J Appl Phys 2010;107(12): 124118-23.

[19]

Panda PK, Sahoo B. PZT to lead free piezo ceramics: a review. Ferroelectrics 2015;474: 128-43.

[20]

Kim MS, Jeon S, Lee DS, Jeong SJ, Song JS. Lead-free NKN-5LT piezoelectric materials for multilayer ceramic actuator. J Electroceram 2008;23(2-4): 372-5.

[21]

Nagata H, Hiruma Y, Takenaka T. Electric-field-induced strain for (Bi1/2Na1/2) TiO3-based lead-free multilayer actuator. J Ceram Soc Jpn 2010;118(1380): 726-30.

[22]

Sapper E, Gassmann A, Gjødvad L, Jo W, Granzow T, Rödel J. Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics. J Eur Ceram Soc 2014;34(3): 653-61.

[23]

Jo W, Ollagnier JB, Park JL, Anton EM, Kwon KJ, Park C, et al. CuO as a sintering additive for (Bi1/2Na1/2)TiO3-BaTiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics. J Eur Ceram Soc 2011;31(12): 2107-17.

[24]

Nagata H, Tabuchi K, Takenaka T. Fabrication and electrical properties of multilayer ceramic actuator using lead-Free (Bi1/2K1/2)TiO3. Jpn J Appl Phys 2013;52(9). 09kd05.

[25]

Lee JH, Kim DM, Seo IT, Kim JH, Park JS, Ryu J, et al. Large strain in CuO-added (Na0.2K0.8)NbO3 ceramic for use in piezoelectric multilayer actuators. J Am Ceram Soc 2016;99(3): 938-45.

[26]

Ahn CW, Kim HS, Woo WS, et al. Low-temperature sintering of Bi0.5(Na, K)0.5TiO3 for multilayer ceramic actuators. J Am Ceram Soc 2015;98(6): 1877-83.

[27]

Iwagami N, Nagata H, Sakaguchi I, Takenaka T. Diffusion behavior of Ag electrodes into (Bi1/2Na1/2)TiO3 ceramics. J Ceram Soc Jpn 2016;124(6): 644-7.

[28]

Lee JS, Choi MS, Hung NV, Kim YS, Kim LW, Park EC, et al. Effects of high energy ball-milling on the sintering behavior and piezoelectric properties of PZT-based ceramics. Ceram Int 2007;33(7): 1283-6.

[29]

Zhang HB, Jiang SL, Kajiyoshi K. Preparation and characterization of sol-gel derived sodium-potassium bismuth titanate powders and thick films deposited by screen printing. J Alloy Comp 2010;495(1): 173-80.

[30]

Fan GF, Shi MB, Lu WZ, Wang YQ, Liang F. Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics. J Eur Ceram Soc 2014;34(1): 23-8.

[31]

Cernea M, Poli G, Aldica VG, Berbecaru C, Vasile BS, Galassi C. Preparation and properties of nanocrystalline BNT-BTx piezoelectric ceramics by sol-gel and spark plasma sintering. Curr Appl Phys 2012;12(4): 1100-5.

[32]

Do NB, Jang HD, Hong L, Han HS, Li DT, Tai WP, et al. Low temperature sintering of lead-free Bi0.5(Na0.82K0.18)0.5TiO3 piezoelectric ceramics by co-doping with CuO and Nb2O5. Ceram Int 2012;38S: S359–62.

[33]

Cernea M, Fochi F, Aldica GV, Vasile BS, Trusca R, Galassi C. Spark-plasmasintering temperature dependence of structural and piezoelectric properties of BNT-BT0.08 nanostructured ceramics. J Mater Sci 2012;47(8): 3669-73.

[34]

Qaiser MA, Hussain A, Xu YQ, Wang YJ, Wang YP, Yang Y, et al. CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics sintered with Ag electrodes at 900 ℃ for multilayer piezoelectric actuator. Chin Phys B 2017;26(3): 03770.

[35]

Hou YD, Zhu MK, Gao F, Wang H, Wang B, Yan H, et al. Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics. J Am Ceram Soc 2004;87(5): 847-50.

[36]

Zhang HB, Jiang SL, Xiao JZ, Kajiyoshi K. Low temperature preparation and electrical properties of sodium-potassium bismuth titanate lead-free piezoelectric thick films by screen printing. J Eur Ceram Soc 2010;30(15): 3157-65.

[37]

Chung K, Yoo J, Lee C, Lee D, Jeong Y, Lee H. Piezoelectric properties of lowtemperature sintering Pb(Co1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr, Ti)O3 ceramics with the addition of Li2CO3 and Bi2O3. Sensor Actuator A 2006;125(2): 340-5.

[38]

Chen KP, Zhou JQ, Zhang FL, Zhang XW, Li CW, An LN. Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. J Am Ceram Soc 2015;98(6): 1698-701.

[39]

Donnelly NJ, Shrout TR, Randall CA. Properties of (1-x)PZT-xSKN ceramics sintered at low temperature using Li2CO3. J Am Ceram Soc 2008;91(7): 2182-8.

[40]

Han HS, Park EC, Lee JS, Yoon JI, Ahn KK. Low-firing Pb(Zr, Ti)O3-based multilayer ceramic actuators using Ag inner electrode. Trans Electr Electron Mater 2011;12(6): 249-52.

[41]

Chung TH, Kwok KW. Low-temperature-sintered Pr-doped 0.93(Bi0.5Na0.5) TiO3-0.07BaTiO3 multifunctional ceramics with Li2CO3 sintering aid. J Alloy Comp 2018;737: 317-22.

[42]

Cheng RF, Xu ZJ, Chu RQ, Hao JG, Du J, Li GR. Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J Eur Ceram Soc 2016;36(3): 489-96.

[43]

Yoo J, Lee C, Jeong Y, Chung K, Lee D, Paik D. Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics with the amount of Li2CO3 addition. Mater Chem Phys 2005;90(2-3): 386-90.

[44]

Hou YD, Chang M, Zhu MK, Song XM, Yan H. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5PZN-0.5PZT systems. J Appl Phys 2007;102(8): 084507.

[45]

Wei D, Wang H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3. J Am Ceram Soc 2017;100(3): 1073-9.

[46]

Vuong LD, Truong-Tho N. Effect of ZnO nanoparticles on the sintering behavior and physical properties of Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. J Electron Mater 2017;46(11): 6395-402.

[47]

Li LT, Zhang NX, Bai CY, Chu XC, Gui ZL. Multilayer piezoelectric ceramic transformer with low temperature sintering. J Mater Sci 2006;41(1): 155-61.

[48]

You HW, Koh JH. Structural and electrical properties of low temperature sintered Li2CO3 doped (Ba, Sr)TiO3 ceramics. J Appl Phys 2006;45(8A): 6362-4.

[49]

Fan PY, Zhang YY, Zhang Q, Xie B, Zhu YW, Mawat MA, et al. Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezoceramics. J Eur Ceram Soc 2018;38(13): 4404-13.

[50]

Lei N, Zhu MK, Yang P, Wang LL, Wang LF, Hou YD, et al. Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys 2011;109(5): 054102.

Journal of Materiomics
Pages 480-488
Cite this article:
Fan P, Zhang Y, Zhang S-T, et al. Low-temperature sintered (Na1/2Bi1/2)TiO3-based incipient piezoceramics for co-fired multilayer actuator application. Journal of Materiomics, 2019, 5(3): 480-488. https://doi.org/10.1016/j.jmat.2019.01.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return