Low-temperature sintered (Na1/2Bi1/2)0.935Ba0.065Ti0.975(Fe1/2Nb1/2)0.025O3 (NBT-BT-0.025FN) lead-free incipient piezoceramics were investigated using high-purity Li2CO3 as sintering aids. With the ≤0.5 wt% Li2CO3 addition, the introduced Li+ cations precede to enter the A-sites of the perovskite lattice to compensate for the A-site deficiencies. Once the addition exceeds 0.5 wt%, the excess Li+ cations will occupy B-sites and give rise to the generation of oxygen vacancies, which accelerate the mass transport and thus lower the sintering temperature effectively from 1100 ℃ down to 925 ℃. It was also found that a small amount of Li+ addition has little effect on the phase structure and electromechanical properties of the system, but overweight seriously disturbs these characteristics because of the large lattice distortion. The sintered NBT-BT-0.025FN incipient piezoceramics with 1.25 wt% Li2CO3 addition at 925 ℃ provides a large strain of 0.33% and a corresponding large signal piezoelectric coefficient d33 of 550 pm/V at 60 kV/cm, indicating this system is a very promising candidate for lead-free co-fired multilayer actuator application.
Akse E, Jones JL. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 2010;10(3): 1935-54.
Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev 2017;4(4): 041305.
Jin L, Li F, Zhang SJ. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 2014;97(1): 1-27.
Xie B, Zhang H, Zhang Q, Zang J, Yang C, Wang Q, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. J Mater Chem 2017;5(13): 6070-8.
Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc 1999;82(4): 797-818.
Zhu Y, Zhang Y, Xie B, Fan P, Marwat MA, Ma W, et al. Large electric fieldinduced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 lead-free piezoceramics. Ceram Int 2018;44(7): 7851-7.
Wu J, Fan Z, Xiao D, Zhu J, Wang J. Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 2016;84: 335-402.
Wu J, Xiao D, Zhu J. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 2015;115(7): 2559-95.
Rödel J, Webber KG, Robert D, Wook J, Masahiko K, Dragan D. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 2015;35(6): 1659-81.
Jin L, Huo RJ, Guo RP, Li F, Wang DW, Tian Y, et al. Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl Mater Interfaces 2016;8(45): 31109-19.
Wang K, Hussain A, Jo W, Rödel J, Viehland DD. Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics. J Am Ceram Soc 2012;95(7): 2241-7.
Krauss W, Schütz D, Naderer M, Orosel D, Reichmann K. BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process. J Eur Ceram Soc 2011;31(9): 1857-60.
Tong XY, Zhou JJ, Wang K, Liu H, Fang JZ. Low-temperature sintered Bi0.5Na0.5TiO3-SrTiO3 incipient piezoceramics and the co-fired multilayer piezoactuator thereof. J Eur Ceram Soc 2017;37(15): 4617-23.
Somwan S, Funsueb N, Limpichaipanit A, Ngamjarurojana A. Influence of low external magnetic field on electric field induced strain behavior of 9/70/30, 9/65/35 and 9/60/40 PLZT ceramics. Ceram Int 2016;42(11): 13223-31.
Jo W, Dittmer R, Acosta M, Zang JD, Groh C. Giant electric-field-induced strains in lead-free ceramics for actuator applications-status and perspective. J Electroceram 2008;29(1): 71-93.
Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rödel J. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 2007;91(11): 112906.
Malik RA, Kang JK, Hussain A, Ahn CW, Han HS, Lee JS. High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3-SrTiO3 incipient piezoelectric ceramics. APEX 2014;7(6): 061502.
Zhang HB, Jiang SL, Xiao JZ, Kajiyoshi K. Piezoelectric and dielectric aging of lead free piezoelectric Bi0.5(Na, K)0.5TiO3 thick films. J Appl Phys 2010;107(12): 124118-23.
Panda PK, Sahoo B. PZT to lead free piezo ceramics: a review. Ferroelectrics 2015;474: 128-43.
Kim MS, Jeon S, Lee DS, Jeong SJ, Song JS. Lead-free NKN-5LT piezoelectric materials for multilayer ceramic actuator. J Electroceram 2008;23(2-4): 372-5.
Nagata H, Hiruma Y, Takenaka T. Electric-field-induced strain for (Bi1/2Na1/2) TiO3-based lead-free multilayer actuator. J Ceram Soc Jpn 2010;118(1380): 726-30.
Sapper E, Gassmann A, Gjødvad L, Jo W, Granzow T, Rödel J. Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics. J Eur Ceram Soc 2014;34(3): 653-61.
Jo W, Ollagnier JB, Park JL, Anton EM, Kwon KJ, Park C, et al. CuO as a sintering additive for (Bi1/2Na1/2)TiO3-BaTiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics. J Eur Ceram Soc 2011;31(12): 2107-17.
Nagata H, Tabuchi K, Takenaka T. Fabrication and electrical properties of multilayer ceramic actuator using lead-Free (Bi1/2K1/2)TiO3. Jpn J Appl Phys 2013;52(9). 09kd05.
Lee JH, Kim DM, Seo IT, Kim JH, Park JS, Ryu J, et al. Large strain in CuO-added (Na0.2K0.8)NbO3 ceramic for use in piezoelectric multilayer actuators. J Am Ceram Soc 2016;99(3): 938-45.
Ahn CW, Kim HS, Woo WS, et al. Low-temperature sintering of Bi0.5(Na, K)0.5TiO3 for multilayer ceramic actuators. J Am Ceram Soc 2015;98(6): 1877-83.
Iwagami N, Nagata H, Sakaguchi I, Takenaka T. Diffusion behavior of Ag electrodes into (Bi1/2Na1/2)TiO3 ceramics. J Ceram Soc Jpn 2016;124(6): 644-7.
Lee JS, Choi MS, Hung NV, Kim YS, Kim LW, Park EC, et al. Effects of high energy ball-milling on the sintering behavior and piezoelectric properties of PZT-based ceramics. Ceram Int 2007;33(7): 1283-6.
Zhang HB, Jiang SL, Kajiyoshi K. Preparation and characterization of sol-gel derived sodium-potassium bismuth titanate powders and thick films deposited by screen printing. J Alloy Comp 2010;495(1): 173-80.
Fan GF, Shi MB, Lu WZ, Wang YQ, Liang F. Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics. J Eur Ceram Soc 2014;34(1): 23-8.
Cernea M, Poli G, Aldica VG, Berbecaru C, Vasile BS, Galassi C. Preparation and properties of nanocrystalline BNT-BTx piezoelectric ceramics by sol-gel and spark plasma sintering. Curr Appl Phys 2012;12(4): 1100-5.
Do NB, Jang HD, Hong L, Han HS, Li DT, Tai WP, et al. Low temperature sintering of lead-free Bi0.5(Na0.82K0.18)0.5TiO3 piezoelectric ceramics by co-doping with CuO and Nb2O5. Ceram Int 2012;38S: S359–62.
Cernea M, Fochi F, Aldica GV, Vasile BS, Trusca R, Galassi C. Spark-plasmasintering temperature dependence of structural and piezoelectric properties of BNT-BT0.08 nanostructured ceramics. J Mater Sci 2012;47(8): 3669-73.
Qaiser MA, Hussain A, Xu YQ, Wang YJ, Wang YP, Yang Y, et al. CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics sintered with Ag electrodes at 900 ℃ for multilayer piezoelectric actuator. Chin Phys B 2017;26(3): 03770.
Hou YD, Zhu MK, Gao F, Wang H, Wang B, Yan H, et al. Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics. J Am Ceram Soc 2004;87(5): 847-50.
Zhang HB, Jiang SL, Xiao JZ, Kajiyoshi K. Low temperature preparation and electrical properties of sodium-potassium bismuth titanate lead-free piezoelectric thick films by screen printing. J Eur Ceram Soc 2010;30(15): 3157-65.
Chung K, Yoo J, Lee C, Lee D, Jeong Y, Lee H. Piezoelectric properties of lowtemperature sintering Pb(Co1/2W1/2)O3-Pb(Mn1/2Nb2/3)O3-Pb(Zr, Ti)O3 ceramics with the addition of Li2CO3 and Bi2O3. Sensor Actuator A 2006;125(2): 340-5.
Chen KP, Zhou JQ, Zhang FL, Zhang XW, Li CW, An LN. Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. J Am Ceram Soc 2015;98(6): 1698-701.
Donnelly NJ, Shrout TR, Randall CA. Properties of (1-x)PZT-xSKN ceramics sintered at low temperature using Li2CO3. J Am Ceram Soc 2008;91(7): 2182-8.
Han HS, Park EC, Lee JS, Yoon JI, Ahn KK. Low-firing Pb(Zr, Ti)O3-based multilayer ceramic actuators using Ag inner electrode. Trans Electr Electron Mater 2011;12(6): 249-52.
Chung TH, Kwok KW. Low-temperature-sintered Pr-doped 0.93(Bi0.5Na0.5) TiO3-0.07BaTiO3 multifunctional ceramics with Li2CO3 sintering aid. J Alloy Comp 2018;737: 317-22.
Cheng RF, Xu ZJ, Chu RQ, Hao JG, Du J, Li GR. Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J Eur Ceram Soc 2016;36(3): 489-96.
Yoo J, Lee C, Jeong Y, Chung K, Lee D, Paik D. Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics with the amount of Li2CO3 addition. Mater Chem Phys 2005;90(2-3): 386-90.
Hou YD, Chang M, Zhu MK, Song XM, Yan H. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5PZN-0.5PZT systems. J Appl Phys 2007;102(8): 084507.
Wei D, Wang H. Low-temperature sintering and enhanced piezoelectric properties of random and textured PIN-PMN-PT ceramics with Li2CO3. J Am Ceram Soc 2017;100(3): 1073-9.
Vuong LD, Truong-Tho N. Effect of ZnO nanoparticles on the sintering behavior and physical properties of Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. J Electron Mater 2017;46(11): 6395-402.
Li LT, Zhang NX, Bai CY, Chu XC, Gui ZL. Multilayer piezoelectric ceramic transformer with low temperature sintering. J Mater Sci 2006;41(1): 155-61.
You HW, Koh JH. Structural and electrical properties of low temperature sintered Li2CO3 doped (Ba, Sr)TiO3 ceramics. J Appl Phys 2006;45(8A): 6362-4.
Fan PY, Zhang YY, Zhang Q, Xie B, Zhu YW, Mawat MA, et al. Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezoceramics. J Eur Ceram Soc 2018;38(13): 4404-13.
Lei N, Zhu MK, Yang P, Wang LL, Wang LF, Hou YD, et al. Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys 2011;109(5): 054102.