AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Combining cold sintering and Bi2O3-Activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures

Haoyang Leng,Jiuyuan NieJian Luo( )
Department of NanoEngineering, Program of Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0448, USA

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

The cold sintering process (CSP) and Bi2O3-activated liquid-phase sintering (LPS) are combined to densify Mg-doped NASICON (Na3.256Mg0.128Zr1.872Si2PO12) to achieve high densities and conductivities at reduced temperatures. As an example, a cold-sintered specimen with the addition of 1.1 wt % Bi2O3 sintering additive achieved a high conductivity of 0.91 mS/cm (with ~96% relative density) after annealing at 1000 ℃; this conductivity is > 70% higher than that of a cold-sintered specimen without adding the Bi2O3 sintering additive, and it is > 700% of the conductivity of a dry-pressed counterpart with the same amount of Bi2O3 added, all of which are subjected to the same heating profile. The highest conductivity achieved in this study via combining CSP and Bi2O3-activated LSP is > 1.5 mS/cm. This study suggests an opportunity to combine the new CSP with the traditional LPS to sinter solid electrolytes to achieve high densities and conductivities at reduced temperatures. This combined CSP-LPS approach can be extended to a broad range of other materials to fabricate the "thermally fragile" solid electrolytes or solid-state battery systems, where reducing the processing temperature is often desirable.

References

[1]

Senguttuvan P, Rousse G, Seznec V, Tarascon JM, Palacín MR. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 2011;23:4109–11. https://doi.org/10.1021/cm202076g.

[2]

Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater 2013;23:947–58. https://doi.org/10.1002/adfm.201200691.

[3]

Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 2012;5:5884. https://doi.org/10.1039/c2ee02781j.

[4]

Pan H, Hu YS, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 2013;6:2338–60. https://doi.org/10.1039/c3ee40847g.

[5]

Lalère F, Leriche JB, Courty M, Boulineau S, Viallet V, Masquelier C, Seznec V. An all-solid state NASICON sodium battery operating at 200℃. J Power Sources 2014;247:975–80. https://doi.org/10.1016/j.jpowsour.2013.09.051.

[6]

Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, Yu Y, Hu YS, Chen L. Solid-state sodium batteries. Adv. Energy Mater. 2018;1703012:14–6. https://doi.org/10.1002/aenm.201703012.

[7]

Noguchi Y, Kobayashi E, Plashnitsa LS, Okada S, Yamaki JI. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds. Electrochim Acta 2013;101:59–65. https://doi.org/10.1016/j.electacta.2012.11.038.

[8]

Zhang Z, Zhang Q, Shi J, Chu YS, Yu X, Xu K, Ge M, Yan H, Li W, Gu L, Hu YS, Li H, Yang XQ, Chen L, Huang X. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater. 2017;7:1–11. https://doi.org/10.1002/aenm.201601196.

[9]

Hayashi A, Noi K, Sakuda A, Tatsumisago M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 2012;3:2–6. https://doi.org/10.1038/ncomms1843.

[10]

Goodenough JB, Hong HYP, Kafalas JA. Fast Na+-ion transport in skeleton structures. Mater Res Bull 1976;11:203–20. https://doi.org/10.1016/0025-5408(76)90077-5.

[11]

Hong HYP. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12. Mater Res Bull 1976;11:173–82. https://doi.org/10.1016/0025-5408(76)90073-8.

[12]

Kim JK, Lim YJ, Kim H, Cho GB, Kim Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ Sci 2015;8:3589–96. https://doi.org/10.1039/c5ee01941a.

[13]

Okubo K, Wang H, Hayashi K, Inada M, Enomoto N, Hasegawa G, Osawa T, Takamura H. A dense NASICON sheet prepared by tape-casting and low temperature sintering. Electrochim Acta 2018;278:176–81. https://doi.org/10.1016/j.electacta.2018.05.020.

[14]

Bohnke O, Ronchetti S, Mazza D. Conductivity measurements on nasicon and nasicon- modified materials. Solid State Ionics 1999;122:127–36. https://doi.org/10.1016/S0167-2738(99)00062-4.

[15]

Wang H, Okubo K, Inada M, Hasegawa G, Enomoto N, Hayashi K. Low temperature-densified NASICON-based ceramics promoted by Na 2 O-Nb 2 O 5 -P 2 O 5 glass additive and spark plasma sintering. Solid State Ionics 2018;322:54–60. https://doi.org/10.1016/j.ssi.2018.04.025.

[16]

Bogusz W, Krok F, Jakubowski W. Bulk and grain boundary electrical conductivities of NASICON. Solid State Ionics 1981;2:171–4. https://doi.org/ 10.1016/0167-2738(81)90175-2.

[17]

Jolley AG, Cohn G, Hitz GT, Wachsman ED. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12. Ionics (Kiel). 2015;21:3031–8. https://doi.org/10.1007/s11581-015-1498-8.

[18]

Takahashi T, Kuwabara K, Shibata M. Solid-state ionics - conductivities of Na+ ion conductors based on NASICON. Solid State Ionics 1980;1:163–75. https://doi.org/10.1016/0167-2738(80)90001-6.

[19]

Song S, Duong HM, Korsunsky AM, Hu N, Lu L. A Na+Superionic conductor for room-temperature sodium batteries. Sci Rep 2016;6:1–10. https://doi.org/10.1038/srep32330.

[20]

Samiee M, Radhakrishnan B, Rice Z, Deng Z, Meng YS, Ong SP, Luo J. Divalent-doped Na3Zr2Si2PO12natrium superionic conductor: improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases. J Power Sources 2017;347:229–37. https://doi.org/10.1016/j.jpowsour.2017.02.042.

[21]

McENTIRE BJ, BARTLETT RA, MILLER GR, GORDON RS. Effect of decomposition on the densification and properties of nasicon ceramic electrolytes. J Am Ceram Soc 1983;66:738–42. https://doi.org/10.1111/j.1151-2916.1983.tb10541.x.

[22]

Lee JS, Chang CM, Il Lee Y, Lee JH, Hong SH. Spark plasma sintering (SPS) of NASICON ceramics. J Am Ceram Soc 2004;87:305–7. https://doi.org/10.1111/j.1551-2916.2004.00305.x.

[23]

Schäf O, Weibel A, Llewellyn PL, Knauth P, Kaabbuathong N, Di Vona ML, Licoccia S, Traversa E. Preparation and electrical properties of dense ceramics with NASICON composition sintered at reduced temperatures. J Electroceram 2004;13:817–23. https://doi.org/10.1007/s10832-004-5198-4.

[24]

Suzuki K, Noi K, Hayashi A, Tatsumisago M. Low temperature sintering of Na1 + xZr2SixP3 − xO12 by the addition of Na3BO3. Scripta Mater 2018;145:67–70. https://doi.org/10.1016/j.scriptamat.2017.10.010.

[25]

Guo H, Baker A, Guo J, Randall CA. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. J Am Ceram Soc 2016;99:3489–507. https://doi.org/10.1111/jace.14554.

[26]

Maria JP, Kang X, Floyd RD, Dickey EC, Guo H, Guo J, Baker A, Funihashi S, Randall CA. Cold sintering: current status and prospects. J Mater Res 2017;32:3205–18. https://doi.org/10.1557/jmr.2017.262.

[27]

Leng H, Huang J, Nie J, Luo J. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes. J Power Sources 2018;391:170–9. https://doi.org/10.1016/j.jpowsour.2018.04.067.

[28]

Berbano SS, Guo J, Guo H, Lanagan MT, Randall CA. Cold sintering process of Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 solid electrolyte. J Am Ceram Soc 2017;100:2123–35. https://doi.org/10.1111/jace.14727.

[29]

Liu Y, Sun Q, Wang D, Adair K, Liang J, Sun X. Development of the cold sintering process and its application in solid-state lithium batteries. J Power Sources 2018;393:193–203. https://doi.org/10.1016/j.jpowsour.2018.05.015.

[30]

Aono H, Sugimoto E, Sadaoka Y, Imanaka N, ya Adachi G. Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics 1991;47:257–64. https://doi.org/10.1016/0167-2738(91)90247-9.

[31]

Bai H, Hu J, Li X, Duan Y, Shao F, Kozawa T, Naito M, Zhang J. Influence of LiBO 2 addition on the microstructure and lithium-ion conductivity of Li 1+x Al x Ti 2−x (PO 4) 3 (x = 0.3) ceramic electrolyte. Ceram Int 2018;44:6558–63. https://doi.org/10.1016/j.ceramint.2018.01.058.

[32]

Zhu T, Lin Y, Yang Z, Su D, Ma S, Han M, Chen F. Evaluation of Li2O as an efficient sintering aid for gadolinia-doped ceria electrolyte for solid oxide fuel cells. J Power Sources 2014;261:255–63. https://doi.org/10.1016/j.jpowsour.2014.03.010.

[33]

Noi K, Suzuki K, Tanibata N, Hayashi A, Tatsumisago M. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive. J Am Ceram Soc 2018;101:1255-65. https://doi.org/10.1111/jace.15288.

[34]

Lee SD, Jung KN, Kim H, Shin HS, Song SW, Park MS, Lee JW. Composite electrolyte for all-solid-state lithium batteries: low-temperature fabrication and conductivity enhancement. ChemSusChem 2017;10:2175–81. https://doi.org/10.1002/cssc.201700104.

[35]

Von Alpen U, Bell MF, Hofer HH. Compositional dependence of the electrochemical and structural parameters in the Nasicon system (Na1+xSixZr2P3-xO12). Solid State Ionics 1981;3–4:215–8. https://doi.org/10.1016/0167-2738(81)90085-0.

[36]

Jadhav HS, Cho MS, Kalubarme RS, Lee JS, Jung KN, Shin KH, Park CJ. Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics. J Power Sources 2013;241:502–8. https://doi.org/10.1016/j.jpowsour.2013.04.137.

[37]

German RM, Suri P, Park SJ. Review: liquid phase sintering. J Mater Sci2009;44:1–39. https://doi.org/10.1007/s10853-008-3008-0.

[38]

Rettenwander D, Welzl A, Pristat S, Tietz F, Taibl S, Redhammer GJ, Fleig J.A microcontact impedance study on NASICON-type Li 1+x Al x Ti 2−x (PO 4) 3 (0 ≤ x ≤ 0.5) single crystals. J Mater Chem A 2016;4:1506–13. https://doi.org/10.1039/C5TA08545D.

Journal of Materiomics
Pages 237-246
Cite this article:
Leng H, Nie J, Luo J. Combining cold sintering and Bi2O3-Activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures. Journal of Materiomics, 2019, 5(2): 237-246. https://doi.org/10.1016/j.jmat.2019.02.005

81

Views

15

Crossref

N/A

Web of Science

24

Scopus

Altmetrics

Received: 29 December 2018
Revised: 04 February 2019
Accepted: 12 February 2019
Published: 13 February 2019
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return