Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
References
Show full outline
Hide outline
Research Article | Open Access

First-principles prediction of magnetically ordered half-metals above room temperature

Muhammad Atif Sattara,bS. Aftab AhmadaFayyaz HussaincClaudio Cazorlab()
Department of Physics, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
School of Materials Science and Engineering, UNSW Sydney, NSW, 2052, Australia
Department of Physics, Bahauddin Zakariya University, 60800, Multan, Pakistan

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Half-metallicity (HM) offers great potential for engineering spintronic applications, yet only few magnetic materials present metallicity in just one spin channel. In addition, most HM systems become magnetically disordered at temperatures well below ambient conditions, which further hinders the development of spin-based electronic devices. Here, we use first-principles methods based on density functional theory (DFT) to investigate the electronic, magnetic, structural, mixing, and vibrational properties of 90 XYZ half-Heusler (HH) alloys (X = Li, Na, K, Rb, Cs; Y = V, Nb, Ta; Z = Si, Ge, Sn, S, Se, Te). We disclose a total of 28 new HH compounds that are ferromagnetic, vibrationally stable, and HM, with semiconductor band gaps in the range of 1–4 eV and HM band gaps of 0.2–0.8 eV. By performing Monte Carlo simulations of a spin Heisenberg model fitted to DFT energies, we estimate the Curie temperature, TC, of each HM compound. We find that 17 HH HM remain magnetically ordered at and above room temperature, namely, 300 ≤ TC ≤ 450 K, with total magnetic moments of 2 and 4 μB. A further materials sieve based on zero-temperature mixing energies let us to conclude 5 overall promising HH HM that remain magnetically ordered at and above room temperature: NaVSi, RbVTe, CsVS, CsVSe, and RbNbTe. We also predict 2 semiconductor materials that are ferromagnetic at ambient conditions: LiVSi and LiVGe.

References

[1]

Felser C, Fecher GH, Balke B. Spintronics: a challenge for materials science and solid-state chemistry. Angew Chem Int Ed 2007;46:668

[2]

Zutic I, Fabian J, Sarma SD. Spintronics: fundamentals and applications. Rev Mod Phys 2003;76:323

[3]

Zhu H, et al. Discovery of TaFeSb-based half-heuslers with high thermoelectric performance. Nat Commun 2019;10:270

[4]

Bhat SG, Anil Kumar PS. Demonstration of efficient spin injection and detection in various systems using Fe3O4 based spin injectors. AIP Adv 2016;6:056308

[5]

Dash SP, Sharma S, Patel RS, de Jong MP, Jansen R. Electrical creation of spin polarization in silicon at room temperature. Nature 2009;462:491

[6]
TanakaCTNowakJMooderaJSSpin-polarized tunneling in a half-metallic ferromagnetJ Appl Phys199986623910.1063/1.371678

Tanaka CT, Nowak J, Moodera JS. Spin-polarized tunneling in a half-metallic ferromagnet. J Appl Phys 1999;86:6239

[7]
HordequinCNozieresJPierreJHalf metallic NiMnSb-based spin-valve structuresJ Magn Magn Mater199818322510.1016/S0304-8853(97)01072-X

Hordequin C, Nozieres J, Pierre J. Half metallic NiMnSb-based spin-valve structures. J Magn Magn Mater 1998;183:225

[8]

de Groot RA, Mueller FM, van Engen PG, Buschow KHJ. New class of materials: half-metallic ferromagnets. Phys Rev Lett 1983;50:2024

[9]

Casper F, Graf T, Chadov S, Balke B, Felser C. Half-heusler compounds: novel materials for energy and spintronic applications. Semicond Sci Technol 2012;27:063001

[10]
AzadaniJGMuniraKRomeroJMaJSivakumarCGhoshAWAnisotropy in layered half-metallic heusler alloy superlatticesJ Appl Phys201611904390410.1063/1.4940878

Azadani JG, Munira K, Romero J, Ma J, Sivakumar C, Ghosh AW, et al. Anisotropy in layered half-metallic heusler alloy superlattices. J Appl Phys 2016;119:043904

[11]
Martin R. Electronic structure: basic theory and practical methods. Cambridge University Press 2012 ISBN:9780511805769
[12]

Cazorla C, Boronat J. Simulation and understanding of atomic and molecular quantum crystals. Rev Mod Phys 2017;89:035003

[13]
DamewoodLBusemeyerBShaughnessyMFongCYYangLHFelserCStabilizing and increasing the magnetic moment of half-metals: the role of Li in half-heusler LiMnZ (Z = N,P,Si)Phys Rev B20159106440910.1103/PhysRevB.91.064409

Damewood L, Busemeyer B, Shaughnessy M, Fong CY, Yang LH, Felser C. Stabilizing and increasing the magnetic moment of half-metals: the role of Li in half-heusler LiMnZ (Z = N,P,Si). Phys Rev B 2015;91:064409

[14]

Ma J, Hegde VI, Munira K, Xie Y, Keshavarz S, Mildebrath DT, et al. Computational investigation of half-heusler compounds for spintronics applications. Phys Rev B 2017;95:024411

[15]
LegrainFCarreteJvan RoekeghemAMadsenGKHMingoNMaterials screening for the discovery of new half-heuslers: machine learning versus ab initio methodsJ Phys Chem B201812262510.1021/acs.jpcb.7b05296

Legrain F, Carrete J, van Roekeghem A, Madsen GKH, Mingo N. Materials screening for the discovery of new half-heuslers: machine learning versus ab initio methods. J Phys Chem B 2018;122:625

[16]

Sattar MA, Rashid M, Hussain F, Imran M, Hashmi MR, Laref A, et al. Physical properties of half-heusler YMnZ (Z=Si,Ge,Sn) compounds via ab-initio study. Solid State Commun 2018;278:10

[17]

Tu NT, Hai PN, Anh LD, Tanaka M. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb. Appl Phys Lett 2016;108:192401

[18]

Cao Q, Fu M, Zhu D, Yao M, Hu S, Chen Y, et al. Growth-controlled engineering of magnetic exchange interactions in single crystalline GaCoZnO1-v epitaxial films with high Co concentration. Chem Mater 2017;29:2717

[19]

Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. The high-throughput highway to computational materials design. Nat Mater 2013;12:191

[20]
GalanakisIMavropoulosPhDederichsPHElectronic structure and SlaterPauling behaviour in half-metallic heusler alloys calculated from first principlesJ Phys D: Appl Phys20063976510.1088/0022-3727/39/5/S01

Galanakis I, Mavropoulos Ph, Dederichs PH. Electronic structure and SlaterPauling behaviour in half-metallic heusler alloys calculated from first principles. J Phys D: Appl Phys 2006;39:765

[21]
WeiX-PDengJ-BMaoG-YChuS-BHuX-RHalf-metallic properties for the Ti2YZ (Y = Fe,Co,Ni; Z = Al,Ga,in) heusler alloys: a first-principles studyIntermetallics2012298610.1016/j.intermet.2012.05.002

Wei X-P, Deng J-B, Mao G-Y, Chu S-B, Hu X-R. Half-metallic properties for the Ti2YZ (Y = Fe,Co,Ni; Z = Al,Ga,in) heusler alloys: a first-principles study. Intermetallics 2012;29:86

[22]

van Leuken H, de Groot RA. Half-metallic antiferromagnets. Phys Rev Lett 1994;74:1171

[23]
LuoHZZhangHWZhuZYMaLXuSFWuGHHalf-metallic properties for the Mn2FeZ (Z = Al,Ga,Si,Ge,Sb) heusler alloys: a first-principles studyJ Appl Phys200810308390810.1063/1.2903057

Luo HZ, Zhang HW, Zhu ZY, Ma L, Xu SF, Wu GH, et al. Half-metallic properties for the Mn2FeZ (Z = Al,Ga,Si,Ge,Sb) heusler alloys: a first-principles study. J Appl Phys 2008;103:083908

[24]

Hu X. HalfMetallic antiferromagnet as a prospective material for spintronics. Adv Mater 2011;24:294

[25]

Hussain MK. Investigations of the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-heusler compounds. Appl Phys A 2018;124:343

[26]
WangXChengZLiuGLargest magnetic moments in the half-heusler alloys XCrZ (X = Li,K,Rb,Cs; Z = S,Se,Te): a first-principles studyMaterials201710107810.3390/ma10091078

Wang X, Cheng Z, Liu G. Largest magnetic moments in the half-heusler alloys XCrZ (X = Li,K,Rb,Cs; Z = S,Se,Te): a first-principles study. Materials 2017;10:1078

[27]

Graf T, Felser Cl, Parkin SSP. Simple rules for the understanding of heusler compounds. Prog Solid State Chem 2011;39:1

[28]

Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J.; Laskowski, R.; et al. WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties, karlheinz schwarz, techn. Universität Wien 2018, Austria, ISBN:3-9501031-1-2.

[29]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865

[30]

Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 2009;102:226401

[31]

Kresse G, Fürthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169

[32]

Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953

[33]

Alfè D. PHON: a program to calculate phonons using the small displacement method. Comput Phys Commun 2009;180:2622

[34]

Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater 2015;108:1

[35]
SinghAMohapatraSZimanTChatterjiTSpin waves in the FCC lattice antiferromagnet: competing interactions, frustration, and instabilities in the hubbard modelJ Appl Phys201712107390310.1063/1.4976807

Singh A, Mohapatra S, Ziman T, Chatterji T. Spin waves in the FCC lattice antiferromagnet: competing interactions, frustration, and instabilities in the hubbard model. J Appl Phys 2017;121:073903

[36]

Escorihuela-Sayalero C, Diéguez O, Íñiguez J. Strain engineering magnetic frustration in perovskite oxide thin films. Phys Rev Lett 2012;109:247202

[37]

Cazorla C, Íñiguez J. Insights into the phase diagram of bismuth ferrite from quasiharmonic free-energy calculations. Phys Rev B 2013;88:214430

[38]

Cazorla C, Diéguez O, Íñiguez J. Multiple structural transitions driven by spin-phonon couplings in a perovskite oxide. Sci. Adv. 2017;3:e1700288

[39]

Cazorla C, Íñiguez J. Giant direct and inverse electrocaloric effects in multiferroic thin films. Phys Rev B 2018;98:174105

[40]
Webster PJ, Ziebeck KRA. In: Wijn HPJ, Landolt-Boörnstein, editors. Alloys and compounds of d -elements with main group elements. Part 2, vol. 19. Berlin: Pt. C Springer-Verlag; 1988. p. 75–184. New Series, Group Ⅲ.
[41]

Cazorla C, Boronat J. First-principles modeling of quantum nuclear effects and atomic interactions in solid 4He at high pressure. Phys Rev B 2015;91:024103

[42]

Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, et al. Entropy-stabilized oxides. Nat Commun 2015;6:8485

[43]
BenisekADachsEThe vibrational and configurational entropy of disordering in Cu3AuJ Alloy Comp201563258510.1016/j.jallcom.2014.12.215

Benisek A, Dachs E. The vibrational and configurational entropy of disordering in Cu3Au. J Alloy Comp 2015;632:585

[44]

Shenoy JN, Hart JN, Grau-Crespo R, Allan NL, Cazorla C. Mixing thermodynamics and photocatalytic properties of GaP-ZnS solid solutions. Adv. Theory Simul. 2019;2:1800146

[45]

van de Walle A, Ceder G. The effect of lattice vibrations on substitutional alloy thermodynamics. Rev Mod Phys 2002;74:11

[46]
BhattacharyaSMadsenGKHA novel P-type half-heusler from high-throughput transport and defect calculationsJ Mater Chem C201641126110.1039/C6TC04259G

Bhattacharya S, Madsen GKH. A novel P-type half-heusler from high-throughput transport and defect calculations. J Mater Chem C 2016;4:11261

[47]
PageAPoudeuPFPUherCA first-principles approach to half-heusler thermoelectrics: accelerated prediction and understanding of material propertiesJ. Materiomics2016210410.1016/j.jmat.2016.04.006

Page A, Poudeu PFP, Uher C. A first-principles approach to half-heusler thermoelectrics: accelerated prediction and understanding of material properties. J. Materiomics 2016;2:104

[48]

Rogl G, et al. (V,Nb)-Doped half heusler alloys based on (Ti,Zr,Hf)NiSn with high ZT. Acta Mater 2017;131:336

Journal of Materiomics
Pages 404-412
Cite this article:
Sattar MA, Ahmad SA, Hussain F, et al. First-principles prediction of magnetically ordered half-metals above room temperature. Journal of Materiomics, 2019, 5(3): 404-412. https://doi.org/10.1016/j.jmat.2019.04.003
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return