AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Revisiting the ionic diffusion mechanism in Li3PS4 via the joint usage of geometrical analysis and bond valence method

Li PanaLiwen ZhangaAnjiang YebShuting ChibZheyi Zoua,( )Bing HebLanli ChencQian ZhaodDa Wanga,dSiqi Shia,d,( )
School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
School of Mathematics and Physics, Hubei Polytechnic University, Huangshi, 435003, China
Materials Genome Institute, Shanghai University, Shanghai, 200444, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Inorganic solid electrolytes have obvious advantages on safety and electrochemical stability compared to organic liquid electrolytes, but the advance on high ionic conductivity of typical electrolytes is still undergoing. Although the first-principles calculation in the ion migration simulation is an important strategy to develop high-performance solid electrolyte, the process is very time-consuming. Here, we propose an effective method by combining the geometrical analysis and bond valance sum calculation to obtain an approximate minimum energy path preliminarily, in parallel to pave the way for the interoperability of low-precision and high-precision ion transport calculation. Taking a promising electrolyte Li3PS4 as an example, we revisit its Li-ionic transport behavior. Our calculated Li-ion pathways and the activation energies (the corresponding values: 1.09 eV vs. 0.88 eV vs. 0.86 eV) in γ-, β- and α-Li3PS4 are consistent with the ones obtained from the first-principles calculations. The variations of the position of P-ions lead the rearrangement of the host PS4 tetrahedron, affecting the diffusion positions of Li-ions and further enabling high Li+ conductivity in β-Li3PS4.

References

[1]

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22(3):587–603.

[2]

Hakari T, Deguchi M, Mitsuhara K, Ohta T, Saita K, Orikasa Y, Uchimoto Y, Kowada Y, Hayashi A, Tatsumisago M. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion-insertion processes. Chem Mater 2017;29(11):4768–74.

[3]

Nagao M, Hayashi A, Tatsumisago M. Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem Commun 2012;22:177–80.

[4]

Unemoto A, Yasaku S, Nogami G, Tazawa M, Taniguchi M, Matsuo M, Ikeshoji T, Orimo S. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl Phys Lett 2014;105(8). 083901.

[5]

Yamada T, Ito S, Omoda R, Watanabe T, Aihara Y, Agostini M, Ulissi U, Hassoun J, Scrosati B. All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: benefits on anode kinetics. J Electrochem Soc 2015;162(4): A646-51.

[6]

Yubuchi S, Ito Y, Matsuyama T, Hayashi A, Tatsumisago M. 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte. Solid State Ionics 2016;285:79–82.

[7]

Oh G, Hirayama M, Kwon O, Suzuki K, Kanno R. Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem Mater 2016;28(8):2634–40.

[8]

Ellis BL, Lee KT, Nazar LF. Positive electrode materials for Li-ion and Li-batteries. Chem Mater 2010;22(3):691–714.

[9]

Manthiram A. Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2011;2(3):176–84.

[10]

Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 2006;18(17):2226–9.

[11]

Aboulaich A, Bouchet R, Delaizir G, Seznec V, Tortet L, Morcrette M, Rozier P, Tarascon JM, Viallet V, Dolle M. A new approach to develop safe all-inorganic monolithic Li-ion batteries. Adv Energy Mater 2011;1(2):179–83.

[12]

Hayashi A, Noi K, Sakuda A, Tatsumisago M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 2012;3:856.

[13]

Yersak TA, Macpherson HA, Kim SC, Le VD, Kang CS, Son SB, Kim YH, Trevey JE, Oh KH, Stoldt C, Lee SH. Solid state enabled reversible four electron storage. Adv Energy Mater 2013;3(1):120–7.

[14]

Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G. Design principles for solid-state lithium superionic conductors. Nat Mater 2015;14(10):1026–31.

[15]

Park KH, Oh DY, Choi YE, Nam YJ, Han L, Kim JY, Xin H, Lin F, Oh SM, Jung YS. Solution-processable glass LiI-Li4SnS4 Superionic conductors for all-solid-state Li-ion batteries. Adv Mater 2016;28(9):1874–83.

[16]

Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough JB. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angew Chem Int Ed 2016;55(34):9965–8.

[17]

Takada K. Progress and prospective of solid-state lithium batteries. Acta Mater 2013;61(3):759–70.

[18]

Mercier R, Malugani JP, Fahys B, Robert G, Douglade J. Structure du tetrathiophosphate de lithium. Acta Crystallogr B 1982;38(7):1887–90.

[19]

Tachez M, Malugani JP, Mercier R, Robert G. Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ionics 1984;14(3):181–5.

[20]

Homma K, Yonemura M, Kobayashi T, Nagao M, Hirayama M, Kanno R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 2011;182(1):53–8.

[21]

Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C. Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 2013;135(3):975–8.

[22]

Lin Z, Liu Z, Dudney NJ, Liang C. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 2013;7(3):2829–33.

[23]

Lin Z, Liu Z, Fu W, Dudney NJ, Liang C. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 2013;23(8):1064–9.

[24]

Boyce JB, Huberman BA. Superionic conductors: transitions, structures, dynamics. Phys Rep 1979;51(4):189–265.

[25]

Gao J, Zhao Y, Shi S, Li H. Lithium-ion transport in inorganic solid state electrolyte. Chin Phys B 2016;25(1). 018211.

[26]

Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R. Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin Phys B 2016;25(1). 018212.

[27]

Blatov VA, Ilyushin GD, Blatova OA, Anurova NA, Ivanov-Schits AK, Dem'yanets LN. Analysis of migration paths in fast-ion conductors with Voronoi-Dirichlet partition. Acta Crystallogr B 2006;62:1010–8.

[28]

Anurova NA, Blatov VA, Ilyushin GD, Blatova OA, Ivanov-Schits AK, Dem'yanets LN. Migration maps of Li+ cations in oxygen-containing compounds. Solid State Ionics 2008;179(39):2248–54.

[29]

Adams S, Rao RP. Understanding ionic conduction and energy storage materials with Bond-Valence-Based methods. Bond Valences 2014;158:129–59.

[30]

Chen HM, Chen M, Adams S. Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys Chem Chem Phys 2015;17(25):16494–506.

[31]

Xiao R, Li H, Chen L. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. J Materiom 2015;1(4):325–32.

[32]

Nakayama M, Kimura M, Jalem R, Kasuga T. Efficient automatic screening for Li ion conductive inorganic oxides with bond valence pathway models and percolation algorithm. Jpn J Appl Phys 2016;55(1). 01AH05.

[33]

Canepa P, Bo SH, Gautam GS, Key B, Richards WD, Shi T, Tian Y, Wang Y, Li J, Ceder G. High magnesium mobility in ternary spinel chalcogenides. Nat Commun 2017;8:1759.

[34]

Nishitani Y, Adams S, Ichikawa K, Tsujita T. Evaluation of magnesium ion migration in inorganic oxides by the bond valence site energy method. Solid State Ionics 2018;315:111–5.

[35]

Avdeev M, Sale M, Adams S, Rao RP. Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics 2012;225:43–6.

[36]

Yang Y, Wu Q, Cui Y, Chen Y, Shi S, Wang RZ, Yan H. Elastic Properties, defect thermodynamics, electrochemical window, phase stability, and Li+ mobility of Li3PS4: insights from first-principles calculations. ACS Appl Mater Interfaces 2016;8(38):25229–42.

[37]

Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dulak M, Friis J, Groves MN, Hammer B, Hargus C, et al. The atomic simulation environment-a Python library for working with atoms. J Phys Condens Matter 2017;29(27):273002.

[38]
Screening platform for solid electrolyte. Shanghai University; 2018 [Online], http://matdata.shu.edu.cn/bmd/.
[39]

Adams S, Rao RP. High power lithium ion battery materials by computational design. Phys Status Solidi 2011;208(8):1746–53.

[40]

Adams S. Modelling ion conduction pathways by bond valence pseudopotential maps. Solid State Ionics 2000;136:1351–61.

[41]

Adams S, Rao RP. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys Chem Chem Phys 2009;11(17):3210–6.

[42]

Brown ID. Recent developments in the methods and applications of the bond valence model. Chem Rev 2009;109(12):6858–919.

[43]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44:1272–6.

[44]

E.W., Ren W, Vanden-Eijnden E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J Chem Phys 2007;126(16):164103.

[45]

Lepley ND, Holzwarth NAW, Du YJA. Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles. Phys Rev B 2013;88(10):104103.

[46]

Homma K, Yonemura M, Nagao M, Hirayama M, Kanno R. Crystal structure of high-temperature phase of lithium ionic conductor, Li3PS4. J Phys Soc Jpn 2010;79:90–93.

[47]

Kim JS, Jung WD, Choi S, Son JW, Kim BK, Lee JH, Kim H. Thermally induced S-sublattice transition of Li3PS4 for fast lithium-ion conduction. J Phys Chem Lett 2018;9(18):5592–7.

[48]

Berbano SS, Mirsaneh M, Lanagan MT, Randall CA. Lithium thiophosphate glasses and glass-ceramics as solid electrolytes: processing, microstructure, and properties. Int J Appl Glass Sci 2013;4(4):414–25.

[49]

Dietrich C, Weber DA, Sedlmaier SJ, Indris S, Culver SP, Walter D, Janek J, Zeier WG. Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J Mater Chem 2017;5(34):18111–9.

[50]

Gao J, Chu G, He M, Zhang S, Xiao R, Li H, Chen L. Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. Sci China Phys Mech Astron 2014;57(8):1526–35.

[51]

Adams S, Swenson J. Pathway models for fast ion conductors by combination of bond valence and reverse Monte Carlo methods. Solid State Ionics 2002;154:151–9.

[52]

Adams S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics 2006;177(19–25):1625–30.

[53]

Mueller C, Zienicke E, Adams S, Habasaki J, Maass P. Comparison of ion sites and diffusion paths in glasses obtained by molecular dynamics simulations and bond valence analysis. Phys Rev B 2007;75(1). 014203.

[54]

Xiao R, Li H, Chen L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci Rep 2015;5:14227.

Journal of Materiomics
Pages 688-695
Cite this article:
Pan L, Zhang L, Ye A, et al. Revisiting the ionic diffusion mechanism in Li3PS4 via the joint usage of geometrical analysis and bond valence method. Journal of Materiomics, 2019, 5(4): 688-695. https://doi.org/10.1016/j.jmat.2019.04.010

132

Views

41

Crossref

N/A

Web of Science

45

Scopus

Altmetrics

Received: 21 March 2019
Revised: 25 April 2019
Accepted: 30 April 2019
Published: 05 May 2019
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return