AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Band structure manipulated by high pressure-assisted Te doping realizing improvement in thermoelectric performance of BiCuSeO system

Zhongyuan LiuaXin Guoa,( )Rui LiaJieming QinaHongjun LiaXin Chenb,( )Xiaoyuan Zhouc,( )
School of Materials Science and Engineering, Engineering Research Center of Optoelectronic Functional Materials for Ministry of Education, Changchun University of Science and Technology, 7989 Weixing Rd., Changchun, 130022, China
School of Physics and Physical Engineering, Qufu Normal University, 57 Jingxuan West Rd., Qufu, 273165, China
School of Physics, Chongqing University, Chongqing, 401331, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Band structure engineering is an effective strategy for the improvement in thermoelectric performance, especially in electrical transport properties. In this work, high pressure is employed to assist Te doping to rapidly realize modulation of band structure in BiCuSe1-xTexO, and then achieving a superhigh carrier mobility of 129.6 cm2V–1s–1 due to significant reduction in the effective mass. The experimental observations have been verified by density functional theory (DFT) simulation. Meanwhile, the implementing of high pressure during synthesis process extends the optimization effect of Te doping on carrier-phonon transport of BiCuSeO system. The multiscale microstructures induced by synergistic effect of high pressure and Te content markedly modulate the scattering mechanisms of carriers and phonons, yielding an ultralow thermal conductivity of 0.3 W m–1K–1 at 873 K and a moderate effect on low-energy carriers. Ultimately, a maximum zT of 0.86 at 873 K is achieved for BiCuSe0.8Te0.2O, ~21% improvement in comparison with the previous reported value for state-of-the-art BiCuSe1-xTexO samples. This study provides a revelation for employing high pressure to manipulate band structure, promoting the effect of heteroatoms doping on the improvement in thermoelectric performance of the BiCuSeO or other systems.

References

[1]

Tritt TM. Holey and unholey semiconductors. Science 1999;283:804–5.

[2]

Zhang AJ, Zhang B, Lu W, Xie DD, Ou HX, Han XD, Dai JY, Lu X, Han G, Wang GY, Zhou XY. Twin engineering in solution-synthesized nonstoichiometric Cu5FeS4 icosahedral nanoparticles for enhanced thermoelectric performance. Adv Funct Mater 2018;28:1705117.

[3]

Zhao LD, He JQ, Berardan D, Lin YH, Li JF, Nan CW, Dragoe N. BiCuSeO oxyselenides:new promising thermoelectric materials. Energy Environ Sci 2014;7:2900–24.

[4]

Liu Y, Zhao LD, Zhu YC, Liu YC, Li F, Yu MJ, Liu DB, Xu W, Lin YH, Nan CW. Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach. Adv Energy Mater 2016;6:1502423.

[5]

Luo ZZ, Zhang XM, Hua X, Tan GJ, Bailey TP, Xu JW, Uher C, Wolverton C, Dravid VP, Yan QY, Kanatzidis MG. High thermoelectric performance in supersaturated solid solutions and nanostructured n-type PbTe-GeTe. Adv Funct Mater 2018;28:1801617.

[6]

Hu LP, Wu HJ, Zhu TJ, Fu CG, He JQ, Ying PJ, Zhao XB. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuthtelluride-based solid solutions. Adv Energy Mater 2015;5:1500411.

[7]

Guo X, Qin JM, Jia XP, Jiang DY. Pressure-induced electrical transport properties, texture, and microstructure of the (Bi, Sb)2Te3 alloys. Inorg Chem Front 2018;5:1540–4.

[8]
Li J Sui JH Barreteau C Berardan D Dragoe N Cai W Pei YL Zhao LD Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenidesJ Alloy Comp201355164953

Li J, Sui JH, Barreteau C, Berardan D, Dragoe N, Cai W, Pei YL, Zhao LD. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J Alloy Comp 2013;551:649–53.

10.1016/j.jallcom.2012.10.160
[9]
Li F Wei TR Kang FY Li JF Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature rangeJ Mater Chem A2013111942910.1039/c3ta11806a

Li F, Wei TR, Kang FY, Li JF. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J Mater Chem A 2013;1:11942–9.

[10]
Li J Sui JH Pei YL Meng XF Berardan D Dragoe N Cai W Zhao LD The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric materialJ Mater Chem A201424903610.1039/c3ta14532h

Li J, Sui JH, Pei YL, Meng XF, Berardan D, Dragoe N, Cai W, Zhao LD. The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J Mater Chem A 2014;2:4903–6.

[11]
Li J Sui JH Pei YL Barreteau C Berardan D Dragoe N Cai W He JQ Zhao LD A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenidesEnergy Environ Sci201258543710.1039/c2ee22622g

Li J, Sui JH, Pei YL, Barreteau C, Berardan D, Dragoe N, Cai W, He JQ, Zhao LD. A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci 2012;5:8543–7.

[12]
Pei YL Wu HJ Wu D Zheng FS He JQ High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation dopingJ Am Chem Soc201413613902810.1021/ja507945h

Pei YL, Wu HJ, Wu D, Zheng FS, He JQ. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc 2014;136:13902–8.

[13]

Ren GK, Wang SY, Zhu YC, Ventura KJ, Tan X, Xu W, Lin YH, Yang JH, Nan CW. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier-phonon coupling. Energy Environ Sci 2017;10:1590–9.

[14]

Pan Y, Aydemir U, Grovogui JA, Witting IT, Hanus R, Xu YB, Wu JS, Wu CF, Sun FH, Zhuang HL, Dong JF, Li JF, Dravid VP, Snyder GJ. Melt-centrifuged (Bi, Sb)2Te3:engineering microstructure toward high thermoelectric efficiency. Adv Mater 2018;30:1802016.

[15]
Yang JM Yang G Zhang GB Wang YX Low effective mass leading to an improved ZT value by 32% for n-type BiCuSeO: a first-principles studyJ Mater Chem A20142139233110.1039/C4TA02050B

Yang JM, Yang G, Zhang GB, Wang YX. Low effective mass leading to an improved ZT value by 32% for n-type BiCuSeO:a first-principles study. J Mater Chem A 2014;2:13923–31.

[16]

Kadhim A, Hmood A, Hassan HA. Characterizations of solid-state microwave-synthesized Sb2Te3-based alloys with various compositions of bismuth in Bi2xSb2(1− x)Te3. Mater Sci Semicond Process 2012;15:549–54.

[17]

Liu Y, Lan JL, Xu W, Liu YC, Pei YL, Cheng B, Liu DB, Lin YH, Zhao LD. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chem Commun 2013;49:8075–7.

[18]

Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15–50.

[19]

Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169–86.

[20]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865–8.

[21]

Zou DF, Liu YY, Xie SH, Lin JG, Zheng HR, Li JY. High pressure effect on the electronic structure and thermoelectric properties of BiCuSeO:first-principles calculations. RSC Adv 2014;4:54819–25.

[22]

Zhang Y, Yuan X, Sun X, Shih BC, Zhang P, Zhang W. Comparative study of structural and electronic properties of Cu-based multinary semiconductors. Phys Rev B Condens Matter 2011;84:075127.

[23]

Yang DW, Su XL, Yan YG, Hu TZ, Xie HY, He J, Uher C, Kanatzidis MG, Tang XF. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1–xPbxCuSeO. Chem Mater 2016;28:4628–40.

[24]

Yang YQ, Liu XC, Liang X. Thermoelectric properties of Bi1−xSnxCuSeO solid solutions. Dalton Trans 2017;46:2510–5.

[25]
Li Z Xiao C Fan SJ Deng Y Zhang WS Ye BJ Xie Y Dual Vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeOJ Am Chem Soc201513765879310.1021/jacs.5b01863

Li Z, Xiao C, Fan SJ, Deng Y, Zhang WS, Ye BJ, Xie Y. Dual Vacancies:an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J Am Chem Soc 2015;137:6587–93.

[26]

Lan JL, Zhan B, Liu YC, Zheng B, Liu Y, Lin YH, Nan CW. Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Appl Phys Lett 2013;102:123905.

[27]

Lan JL, Liu YC, Zhan B, Lin YH, Zhang BP, Yuan X, Zhang WQ, Xu W, Nan CW. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv Mater 2013;25:5086–90.

[28]

Lee DS, An TH, Jeong M, Choi HS, Lim YS, Seo WS, Park CH, Park C, Park HH. Density of state effective mass and related charge transport properties in Kdoped BiCuOSe. Appl Phys Lett 2013;103:232110.

[29]

Guo X, Jia XP, Qin JM, Sun HR, Zhang YW, Sun B, Liu BW, Ma HA. Fast preparation and high thermoelectric performance of the stable Bi0.5Sb1.5Te3 bulk materials for different synthesis pressures. Chem Phys Lett 2014;610:204–8.

[30]

Yu FR, Xu B, Zhang JJ, Yu DL, He JL, Liu ZY, Tian YJ. Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi2Te3 bulks. Mater Res Bull 2012;47:1432–7.

[31]
Pan Y Wei TR Wu CF Li JF Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3−xSex alloys: the combined effect of point defect and Se contentJ Mater Chem C2015310583910.1039/C5TC02219C

Pan Y, Wei TR, Wu CF, Li JF. Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3−xSex alloys:the combined effect of point defect and Se content. J Mater Chem C 2015;3:10583–9.

[32]

Xie HH, Wang H, Pei YZ, Fu CG, Liu XH, Snyder GJ, Zhao XB, Zhu TJ. Beneficial contribution of alloy disorder to electron and phonon transport in halfheusler thermoelectric materials. Adv Funct Mater 2013;23:5123–30.

[33]
Liu YC Zhou YM Lan JL Zeng CC Zheng YH Zhan B Zhang BP Lin YH Nan CW Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenidesJ Alloy Comp20166623204

Liu YC, Zhou YM, Lan JL, Zeng CC, Zheng YH, Zhan B, Zhang BP, Lin YH, Nan CW. Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides. J Alloy Comp 2016;662:320–4.

10.1016/j.jallcom.2015.12.087
[34]
Liu Y Zhao LD Liu YC Lan JL Xu W Li F Zhang BP Berardan D Dragoe N Lin YH Nan CW Li JF Zhu HM Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficienciesJ Am Chem Soc201113320112510.1021/ja2091195

Liu Y, Zhao LD, Liu YC, Lan JL, Xu W, Li F, Zhang BP, Berardan D, Dragoe N, Lin YH, Nan CW, Li JF, Zhu HM. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J Am Chem Soc 2011;133:20112–5.

[35]

Ren GK, Lan JL, Butt S, Ventura KJ, Lin YH, Nan CW. Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Adv 2015;5:69878–85.

[36]

Xie HY, Su XL, Zheng G, Zhu T, Yin K, Yan YG, Uher C, Kanatzidis MG, Tang XF. The Role of Zn in Chalcopyrite CuFeS2: enhanced thermoelectric properties of Cu1–xZnxFeS2 with in situ nanoprecipitates. Adv. Energy Mater. 2017;7:1601299.

[37]

Zhu B, Huang ZY, Wang XY, Yu Y, Yang L, Gao N, Chen ZG, Zu FQ. Attaining ultrahigh thermoelectric performance of direction-solidified bulk n-type Bi2Te2.4Se0.6 via its liquid state treatment. Nano Energy 2017;42:8–16.

[38]

Peng KL, Lu X, Zhan H, Hui S, Tang XD, Wang GW, Dai JY, Uher C, Wang GY, Zhou XY. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy Environ Sci 2016;9:454–60.

[39]

Li F, Li JF, Zhao LD, Xiang K, Liu Y, Zhang BP, Lin YH, Nan CW, Zhu HM. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ Sci 2012;5:7188–95.

[40]

Pei YL, He JQ, Li JF, Li F, Liu QJ, Pan W, Barreteau C, Berardan D, Dragoe N, Zhao LD. High thermoelectric performance of oxyselenides:intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater 2013;5:e47.

[41]

Yildiz K, Akgul U, Leipner HS, Atici Y. Electron microscopy study of thermoelectric n-type Bi2(Te0.9Se0.1)3 film deposited by dc sputtering. Superlattice Microst 2013;58:60–71.

[42]

Zhao LD, Berardan D, Pei YL, Byl C, Pinsard-Gaudart L, Dragoe N. Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett 2010;97:092118.

Journal of Materiomics
Pages 649-656
Cite this article:
Liu Z, Guo X, Li R, et al. Band structure manipulated by high pressure-assisted Te doping realizing improvement in thermoelectric performance of BiCuSeO system. Journal of Materiomics, 2019, 5(4): 649-656. https://doi.org/10.1016/j.jmat.2019.06.002

162

Views

12

Crossref

N/A

Web of Science

18

Scopus

Altmetrics

Received: 13 April 2019
Revised: 26 May 2019
Accepted: 15 June 2019
Published: 15 June 2019
©2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return