AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures

Zong-Yang Shena( )Yu WangaYanxue TangbYuanying YuaWen-Qin LuoaXingcai WangcYueming LiaZhumei WangaFusheng Songa
Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, China National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
Key Laboratory of Optoelectronic Material and Device, Shanghai Normal University, Shanghai, 200234, China
Chengdu Hongming UESTC Electronic New Materials Co., Ltd., Chengdu, 610100, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

A glass with composition of B2O3-Bi2O3-SiO2-CaO-BaO-Al2O3-ZrO2 (BBSZ) modified BaxSr1-xTiO3 (BST, x = 0.3 and 0.4) ceramics were prepared by a conventional solid state reaction method abided by a formula of BST + y%BBSZ (y = 0, 2, 4, 7, and 10, in mass). The effect of BBSZ glass content on the structure, dielectric properties and energy storage characteristics of the ceramics was investigated. The dielectric constant reduced but the endurable electrical strength enhanced due to the BBSZ glass addition in BST ceramics. In particular, the dielectric loss of the ceramics at elevated temperature (e.g. 200 ℃) can be strongly suppressed from tanδ>20% to tanδ<3% after BBSZ glass modification. For Ba0.3Sr0.7TiO3+2% BBSZ ceramics, an optimized energy storage density (γ = 0.63 J/cm3) and efficiency (η = 91.6%) under an applied electric field of 160 kV/cm was obtained at room temperature. Meanwhile, the temperature dependent polarization-electric field (P-E) hysteresis loops were measured to evaluate the energy storage characteristics of the ceramics potential for high voltage capacitor application at elevated temperatures.

References

[1]
Chu BJ Zhou X Ren KL Neese B Lin M Wang Q A dielectric polymer with high electric energy density and fast discharge speedScience2006313334610.1126/science.1127798

Chu BJ, Zhou X, Ren KL, Neese B, Lin M, Wang Q, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006;313:334–6.

[2]

Zhao L, Liu Q, Gao J, Zhang S, Li JF. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017;29:1701824.

[3]

Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 2017;29:1601727.

[4]
Burn I Smyth DM Energy storage in ceramic dielectricsJ Mater Sci1972733943

Burn I, Smyth DM. Energy storage in ceramic dielectrics. J Mater Sci 1972;7:339–43.

10.1007/BF00555636
[5]
Love GR Energy storage in ceramic dielectricsJ Am Ceram Soc199073323810.1111/j.1151-2916.1990.tb06513.x

Love GR. Energy storage in ceramic dielectrics. J Am Ceram Soc 1990;73:323–8.

[6]
Wang T Jin L Li C Hu Q Wei X Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage applicationJ Am Ceram Soc2015985596610.1111/jace.13325

Wang T, Jin L, Li C, Hu Q, Wei X. Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 2015;98:559–66.

[7]

Wu L, Wang X, Li L. Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv 2016;6:14273–82.

[8]
Qu B Du H Yang Z Lead free relaxor ferroelectric ceramics with high optical transparency and energy storage abilityJ Mater Chem C201641795803

Qu B, Du H, Yang Z. Lead free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J Mater Chem C 2016;4:1795–803.

10.1039/C5TC04005A
[9]

Chauhan A, Patel S, Vaish R, Bowen CR. Anti-ferroelectric ceramics for high energy density capacitors. Materials 2015;8:8009–31.

[10]

Zhang L, Jiang S, Fan B, Zhang G. High energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics. Ceram Int 2015;41:1139–44.

[11]
Xu L He C Yang X Wang Z Li X Tailor HN Composition dependent structure, dielectric and energy storage properties of Pb(Tm1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3 antiferroelectric ceramicsJ Eur Ceram Soc201737332934

Xu L, He C, Yang X, Wang Z, Li X, Tailor HN, et al. Composition dependent structure, dielectric and energy storage properties of Pb(Tm1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3 antiferroelectric ceramics. J Eur Ceram Soc 2017;37:3329–34.

[12]
Wei J Yang T Wang H Excellent energy storage and charge-discharge performances in PbHfO3 antiferroelectric ceramicsJ Eur Ceram Soc20193962430

Wei J, Yang T, Wang H. Excellent energy storage and charge-discharge performances in PbHfO3 antiferroelectric ceramics. J Eur Ceram Soc 2019;39:624–30.

10.1016/j.jeurceramsoc.2018.09.039
[13]

Puli WS, Pradhan DK, Adireddy S, Chrisey DB, Katiyar RS. Electric field induced weak ferroelectricity in Ba0.70Sr0.30TiO3 ceramics capacitors. Ferroelectrics 2017;516:133–9.

[14]

Carlson CM, Rivkin TV, Parilla PA, Perkins JD, Ginley DS, Kozyrev AB, et al. Large dielectric constant (ε/ε0>6000) Ba0.4Sr0.6TiO3 thin films for highperformance microwave phase shifters. Appl Phys Lett 2000;76:1920–2.

[15]

Li T, Zawadzki P, Stall RA, Liang S, Lu Y. High dielectric constant BaxSr1-xTiO3 (BST) thin films made by mocvd techniques for dram applications. Integr Ferroelectr 1997;17:127–39.

[16]

Yamamoto T, Takao S. Complex impedance analysis of Nb-doped (Ba0.6Sr0.4)TiO3 PTC (positive temperature coefficient) thermistors. Jpn J Appl Phys 1992;31:3120–3.

[17]
Fletcher N Hilton A Ricketts B Optimization of energy storage density in ceramic capacitorsJ Phys D Appl Phys1996292538

Fletcher N, Hilton A, Ricketts B. Optimization of energy storage density in ceramic capacitors. J Phys D Appl Phys 1996;29:253–8.

10.1088/0022-3727/29/1/037
[18]

Wang J, Tang L, Shen B, Zhai J. Property optimization of BST-based composite glass ceramics for energy-storage applications. Ceram Int 2014;40:2261–6.

[19]
Song Z Liu H Zhang S Wang Z Shi Y Hao H Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramicsJ Eur Ceram Soc201434120917

Song Z, Liu H, Zhang S, Wang Z, Shi Y, Hao H, et al. Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J Eur Ceram Soc 2014;34:1209–17.

10.1016/j.jeurceramsoc.2013.11.039
[20]

Wang Y, Shen ZY, Li Y, Wang Z, Luo WQ, Hong Y. Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x≤0.4) paraelectric ceramics. Ceram Int 2015;41:8252–6.

[21]

Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv Mater 2015;27:6658–63.

[22]
Dittmer R Anton EM Jo W Simons H Daniels JE Hoffman M A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3J Am Ceram Soc20129535192410.1111/j.1551-2916.2012.05321.x

Dittmer R, Anton EM, Jo W, Simons H, Daniels JE, Hoffman M, et al. A hightemperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3. J Am Ceram Soc 2012;95:3519–24.

[23]
Wang J Hu J Yang L Zhu K Li BW Sun Q High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticlesJ Materiomics20184445010.1117/12.2504872

Wang J, Hu J, Yang L, Zhu K, Li BW, Sun Q, et al. High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticles. J Materiomics 2018;4:44–50.

[24]

Manoharan MP, Zou C, Furman E, Zhang N, Kushner DI, Zhang S, et al. Flexible glass for high temperature energy storage capacitors. Energy Technol 2013;1:313–8.

[25]

Smith NJ, Rangarajan B, Lanagan MT, Pantano CG. Alkali-free glass as a high energy density dielectric material. Mater Lett 2009;63:1245–8.

[26]

Diao C, Liu H, Hao H, Cao M, Yao Z. Effect of SiO2 additive on dielectric response and energy storage performance of Ba0.4Sr0.6TiO3 ceramics. Ceram Int 2016;42:12639–43.

[27]
Lu X Tong Y Talebinezhad H Zhang L Cheng ZY Dielectric and energy-storage performance of Ba0.5Sr0.5TiO3-SiO2 ceramic-glass compositesJ Alloy Comp201874512734

Lu X, Tong Y, Talebinezhad H, Zhang L, Cheng ZY. Dielectric and energystorage performance of Ba0.5Sr0.5TiO3-SiO2 ceramic-glass composites. J Alloy Comp 2018;745:127–34.

10.1016/j.jallcom.2018.02.173
[28]
Yang H Yan F Lin Y Wang T Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass additionJ Eur Ceram Soc201838136773

Yang H, Yan F, Lin Y, Wang T. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J Eur Ceram Soc 2018;38:1367–73.

10.1016/j.jeurceramsoc.2017.11.058
[29]

Patel S, Chauhan A, Vaish R. Improved electrical energy storage density in vanadium-doped BaTiO3 bulk ceramics by addition of 3BaO-3TiO2-B2O3 glass. Energy Technol 2015;3:70–6.

[30]
Patel S Chauhan A Vaish R Thomas P Enhanced energy storage performance of glass added 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ferroelectric ceramicsJ Asian Ceram Soc20153383910.1016/j.jascer.2015.07.004

Patel S, Chauhan A, Vaish R, Thomas P. Enhanced energy storage performance of glass added 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ferroelectric ceramics. J Asian Ceram Soc 2015;3:383–9.

[31]
Cahn JW The metastable liquidus and its effect on the crystallization of glassJ Am Ceram Soc1969521182110.1111/j.1151-2916.1969.tb11194.x

Cahn JW. The metastable liquidus and its effect on the crystallization of glass. J Am Ceram Soc 1969;52:118–21.

[32]
Wu T Pu Y Zong T Gao P Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO-TiO2-SiO2 glass-ceramics additionJ Alloy Comp20145844615

Wu T, Pu Y, Zong T, Gao P. Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO-TiO2-SiO2 glass-ceramics addition. J Alloy Comp 2014;584:461–5.

10.1016/j.jallcom.2013.09.072
[33]
Shen ZY Zhen Y Wang K Li JF Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramicsJ Am Ceram Soc20099217485210.1111/j.1551-2916.2009.03128.x

Shen ZY, Zhen Y, Wang K, Li JF. Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics. J Am Ceram Soc 2009;92:1748–52.

[34]

Li YM, Shen ZY, Li RR, Wang ZM, Hong Y, Liao RH. Effect of BBS-based frit on the low temperature sintering and electrical properties of KNN lead-free piezoceramics. Int J Appl Ceram Technol 2013;10:866–72.

[35]

Ye Y, Zhang SC, Dogan F, Schamiloglu E, Gaudet J, Castro P, et al. Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. PPC. IEEE International Pulsed Power Conference 2003;1:719–22. 2003.

[36]
Shen ZY Li Y Luo WQ Wang Z Gu X Liao R Structure and dielectric properties of NdxSr1-xTiO3 ceramics for energy storage applicationJ Mater Sci Mater Electron2013247041010.1007/s10854-012-0798-2

Shen ZY, Li Y, Luo WQ, Wang Z, Gu X, Liao R. Structure and dielectric properties of NdxSr1-xTiO3 ceramics for energy storage application. J Mater Sci Mater Electron 2013;24:704–10.

[37]

Zheludev IS. Physics of crystalline dielectrics. New York:Springer US; 2012.

Journal of Materiomics
Pages 641-648
Cite this article:
Shen Z-Y, Wang Y, Tang Y, et al. Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. Journal of Materiomics, 2019, 5(4): 641-648. https://doi.org/10.1016/j.jmat.2019.06.003

190

Views

57

Crossref

N/A

Web of Science

56

Scopus

Altmetrics

Received: 07 February 2019
Revised: 23 May 2019
Accepted: 15 June 2019
Published: 16 June 2019
©2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return