AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Polarization reversal via a transient relaxor state in nonergodic relaxors near freezing temperature

Chang-Hyo HongaHanzheng GuobXiaoli TanbJohn E. DanielscWook Joa,( )
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
Department of Materials Science and Engineering, Iowa State University, Ames, IA, 50011, USA
School of Materials Science and Engineering, University of New South Wales, New South Wales, 2052, Australia

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Among the unresolved issues in the study of relaxor ferroelectrics is the role of freezing temperature, across which the dynamics of polarization reversal in relaxor ferroelectrics changes. The presence of this freezing temperature is best manifested by the appearance of a double polarization hysteresis loop just above the freezing temperature. Given that the polarization pinching evolving into a double hysteresis starts well below the freezing temperature, there exists a transient temperature regime between the nonergodic and the ergodic relaxor states. To clarify the role of the freezing temperature on the pinching, the polarization reversal near the freezing temperature of relaxor (Pb1-xLax)(Zr1-yTy)1-x/4O3 (PLZT) was monitored using three in situ electric field methods: electrocaloric effect, neutron diffraction, and transmission electron microscopy. We demonstrate that the pinching results from a two-step process, 1) domain detexturization in the ferroelectric state and 2) miniaturization of domains. This observation explains the recently reported gap between the depolarization temperature Td and the ferroelectric-to-relaxor transition temperature TF-R in lead-free relaxors. We further show that Td and TF-R, which have long been considered identical in lead-based relaxors, are not the same. The current study suggests that the mismatch between Td and TF-R is an inherent feature in both lead-based and lead-free relaxor ferroelectrics.

References

[1]
Haertling GH Ferroelectric ceramics: history and technologyJ Am Ceram Soc199982479781810.1111/j.1151-2916.1999.tb01840.x

Haertling GH. Ferroelectric ceramics:history and technology. J Am Ceram Soc 1999;82(4):797–818.

[2]
Hlinka J Do we need the ether of polar nanoregions?J Adv Dielectr201202021241006

Hlinka J. Do we need the ether of polar nanoregions? J Adv Dielectr 2012;02(02):1241006.

10.1142/S2010135X12410068
[3]
Kleemann W Random fields in relaxor ferroelectrics — a jubilee reviewJ Adv Dielectr201202021241001

Kleemann W. Random fields in relaxor ferroelectrics — a jubilee review. J Adv Dielectr 2012;02(02):1241001.

10.1142/S2010135X12410019
[4]

Viehland D, Li JF, Jang SJ, Cross LE, Wuttig M. Dipolar-glass model for lead magnesium niobate. Phys Rev B 1991;43(10):8316–20.

[5]
Viehland D Jang SJ Cross LE Wuttig M Freezing of the polarization fluctuations in lead magnesium niobate relaxorsJ Appl Phys1990686291621

Viehland D, Jang SJ, Cross LE, Wuttig M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 1990;68(6):2916–21.

10.1063/1.346425
[6]

Ke S, Fan H, Huang H. Revisit of the Vogel eFulcher freezing in lead magnesium niobate relaxors. Appl Phys Lett 2010;97(13):132905.

[7]

Pirc R, Kutnjak Z. Freezing in relaxor ferroelectrics and dipolar glasses. Phase Transitions 2015;88(3):222–33.

[8]

Tagantsev AK. Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. Phys Rev Lett 1994;72(7):1100–3.

[9]

Bobnar V, Kutnjak Z, Pirc R, Levstik A. Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys Rev B:Condens Matter 1999;60(9):6420–7.

[10]

Bobnar V, Kutnjak Z, Pirc R, Levstik A. Relaxor freezing and electric-field–induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics. EPL (Europhys Lett) 1999;48(3):326.

[11]
Anton E-M Jo W Damjanovic D Rödel J Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramicsJ Appl Phys2011110909410810.1063/1.3660253

Anton E-M, Jo W, Damjanovic D, Rodel J. Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys 2011;110(9):094108.

[12]
Zhao J Zhang N Ren W Niu G Walker D Thomas Pamela A Wang L Ye Z-G Polar domain structural evolution under electric field and temperature in the (Bi0.5Na0.5)TiO3-0.06BaTiO3 piezoceramicsJ Am Ceram Soc201910214374710.1111/jace.15883

Zhao J, Zhang N, Ren W, Niu G, Walker D, Thomas Pamela A, Wang L, Ye Z-G. Polar domain structural evolution under electric field and temperature in the (Bi0.5Na0.5)TiO3-0.06BaTiO3 piezoceramics. J Am Ceram Soc 2019;102(1):437–47.

[13]
Jo W Dittmer R Acosta M Zang J Groh C Sapper E Wang K Rödel J Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspectiveJ Electroceram2012291719310.1007/s10832-012-9742-3

Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rodel J. Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective. J Electroceram 2012;29(1):71–93.

[14]

Ke SM, Huang HT, Fan HQ, Lee HK, Zhou LM, Mai Y-W. Antiferroelectric-like properties and enhanced polarization of Cu-doped K0.5Na0.5NbO3 piezoelectric ceramics. Appl Phys Lett 2012;101(8):082901.

[15]
Shi J Fan H Liu X Li Q Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x(Bi0.2Sr0.70.1)xBa0.055TiO3 ceramicsJ Eur Ceram Soc20143415367583

Shi J, Fan H, Liu X, Li Q. Giant strain response and structure evolution in (Bi0.5Na0.5)0.945−x(Bi0.2Sr0.70.1)xBa0.055TiO3 ceramics. J Eur Ceram Soc 2014;34(15):3675–83.

10.1016/j.jeurceramsoc.2014.05.032
[16]

Carl K, Hardtl KH. Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics 1977;17(1):473–86.

[17]

Granzow T, Suvaci E, Kungl H, Hoffmann MJ. Deaging of heat-treated irondoped lead zirconate titanate ceramics. Appl Phys Lett 2006;89(26):262908.

[18]
Hong C-H Kim H-P Choi B-Y Han H-S Son JS Ahn CW Jo W Lead-free piezoceramics – where to move on?J Materiomics201621124

Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son JS, Ahn CW, Jo W. Lead-free piezoceramics – where to move on? J Materiomics 2016;2(1):1–24.

10.1016/j.jmat.2015.12.002
[19]

Jo W, Daniels J, Damjanovic D, Kleemann W, Rodel J. Two-stage processes of electrically induced-ferroelectric to relaxor transition in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3. Appl Phys Lett 2013;102(19):192903.

[20]

Calvarin G, Husson E, Ye ZG. X-ray study of the electric field-induced phase transition in single crystal Pb(Mg1/3Nb2/3)O3. Ferroelectrics 1995;165(1):349–58.

[21]

Ye Z-G, Schmid H. Optical, dielectric and polarization studies of the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3 [PMN]. Ferroelectrics 1993;145(1):83–108.

[22]

Cheng ZY, Katiyar RS, Yao X, Guo A. Dielectric behavior of lead magnesium niobate relaxors. Phys Rev B 1997;55(13):8165–74.

[23]

Farhi R, Marssi ME, Dellis JL, Picot JC, Morell A. On the nature of the glassy state in 9/65/35 PLZT ceramics. Ferroelectrics 1996;176(1):99–106.

[24]

Schaab S, Granzow T. Temperature dependent switching mechanism of (Pb0.92La0.08)(Zr0.65Ti0.35)O3 investigated by small and large signal measurements. Appl Phys Lett 2010;97(13):132902.

[25]
Sapper E Schaab S Jo W Granzow T Rödel J Influence of electric fields on the depolarization temperature of Mn-doped (1-x)Bi1/2Na1/2TiO3-xBaTiO3J Appl Phys2012111101410510.1063/1.3674275

Sapper E, Schaab S, Jo W, Granzow T, Rodel J. In fluence of electric fields on the depolarization temperature of Mn-doped (1-x)Bi1/2Na1/2TiO3-xBaTiO3. J Appl Phys 2012;111(1):014105.

[26]

Bai W, Chen D, Zheng P, Shen B, Zhai J, Ji Z. Composition- and temperaturedriven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics. Dalton Trans 2016;45(20):8573–86.

[27]
Daniels JE Cozzan C Ukritnukun S Tutuncu G Andrieux J Glaum J Dosch C Jo W Jones JL Two-step polarization reversal in biased ferroelectricsJ Appl Phys20141152222410410.1063/1.4881835

Daniels JE, Cozzan C, Ukritnukun S, Tutuncu G, Andrieux J, Glaum J, Dosch C, Jo W, Jones JL. Two-step polarization reversal in biased ferroelectrics. J Appl Phys 2014;115(22):224104.

[28]

Genenko YA, Khachaturyan R, Schultheiß J, Ossipov A, Daniels JE, Koruza J. Stochastic multistep polarization switching in ferroelectrics. Phys Rev B 2018;97(14):144101.

[29]

Glaum J, Simons H, Hudspeth J, Acosta M, Daniels JE. Temperature dependent polarization reversal mechanism in 0.94(Bi1/2Na1/2)TiO3-0.06Ba(Zr0.02Ti0.98)O3 relaxor ceramics. Appl Phys Lett 2015;107(23):232906.

[30]
Hong C-H Fan Z Tan X Kang W-S Ahn CW Shin Y Jo W Role of sodium deficiency on the relaxor properties of Bi1/2Na1/2TiO3-BaTiO3J Eur Ceram Soc20183816537581

Hong C-H, Fan Z, Tan X, Kang W-S, Ahn CW, Shin Y, Jo W. Role of sodium deficiency on the relaxor properties of Bi1/2Na1/2TiO3-BaTiO3. J Eur Ceram Soc 2018;38(16):5375–81.

10.1016/j.jeurceramsoc.2018.08.006
[31]
Simons H Daniels JE Studer AJ Jones JL Hoffman M Measurement and analysis of field-induced crystallographic texture using curved position-sensitive diffraction detectorsJ Electroceram20143242839110.1007/s10832-014-9890-8

Simons H, Daniels JE, Studer AJ, Jones JL, Hoffman M. Measurement and analysis of field-induced crystallographic texture using curved positionsensitive diffraction detectors. J Electroceram 2014;32(4):283–91.

[32]

Tan X, Xu Z, Shang JK, Han P. Direct observations of electric field-induced domain boundary cracking in 〈001〉 oriented piezoelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal. Appl Phys Lett 2000;77(10):1529–31.

[33]

Tan X, Shang JK. In-situ transmission electron microscopy study of electricfield-induced grain-boundary cracking in lead zirconate titanate. Philos Mag A 2002;82(8):1463–78.

[34]
Tan X He H Shang J-K In situ transmission electron microscopy studies of electric-field-induced phenomena in ferroelectricsJ Mater Res2005207164153

Tan X, He H, Shang J-K. In situ transmission electron microscopy studies of electric-field-induced phenomena in ferroelectrics. J Mater Res 2005;20(7):1641–53.

10.1557/JMR.2005.0213
[35]

Daniels JE, Jo W, Rodel J, Honkim aki V, Jones JL. Electric-field-induced phasechange behavior in (Bi0.5Na0.5)TiO3–BaTiO3–(K0.5Na0.5)NbO3: a combinatorial investigation. Acta Mater 2010;58(6):2103–11.

[36]
Kutnjak Z, Rožič B, Pirc R. Electrocaloric effect:theory, measurements, and applications. Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc; 2015.
[37]

Scott JF. Electrocaloric materials. Annu Rev Mater Res 2011;41(1):229–40.

[38]

Moya X, Defay E, Heine V, Mathur ND. Too cool to work. Nat Phys 2015;11(3):202–5.

[39]
Ahn CW Hong C-H Choi B-Y Kim H-P Han H-S Hwang Y Jo W Wang K Li J-F Lee J-S Kim IW A brief review on relaxor ferroelectrics and selected issues in lead-free relaxorsJ Korean Phys Soc2016681214819410.3938/jkps.68.1481

Ahn CW, Hong C-H, Choi B-Y, Kim H-P, Han H-S, Hwang Y, Jo W, Wang K, Li J-F, Lee J-S, Kim IW. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. J Korean Phys Soc 2016;68(12):1481–94.

[40]
Bokov AA Ye ZG Recent progress in relaxor ferroelectrics with perovskite structureJ Mater Sci2006411315210.1007/s10853-005-5915-7

Bokov AA, Ye ZG. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 2006;41(1):31–52.

[41]
Cross LE. Relaxor ferroelectrics, piezoelectricity. Springer Berlin Heidelberg; 2008. p. 131–55.
[42]

Schmidt G, Arndt H, Borchhardt G, von Cieminski J, Petzsche T, Borman K, Sternberg A, Zirnite A, Isupov VA. Induced phase transitions in ferroelectrics with diffuse phase transition. Phys Status Solidi A 1981;63(2):501–10.

[43]
Kamba S Bovtun V Petzelt J Rychetsky I Mizaras R Brilingas A Banys J Grigas J Kosec M Dielectric dispersion of the relaxor PLZT ceramics in the frequency range 20 Hz-100 THzJ Phys: Condens Matter2000124497

Kamba S, Bovtun V, Petzelt J, Rychetsky I, Mizaras R, Brilingas A, Banys J, Grigas J, Kosec M. Dielectric dispersion of the relaxor PLZT ceramics in the frequency range 20 Hz-100 THz. J Phys:Condens Matter 2000;12(4):497.

10.1088/0953-8984/12/4/309
[44]

Qu W, Zhao X, Tan X. In situ transmission electron microscopy study of the nanodomain growth in a Sc-doped lead magnesium niobate ceramic. Appl Phys Lett 2006;89(2):022904.

[45]
Qu W Zhao X Tan X Evolution of nanodomains during the electric-field-induced relaxor to normal ferroelectric phase transition in a Sc-doped Pb(Mg1/3Nb2/3)O3 ceramicJ Appl Phys2007102808410110.1063/1.2795677

Qu W, Zhao X, Tan X. Evolution of nanodomains during the electric-fieldinduced relaxor to normal ferroelectric phase transition in a Sc-doped Pb(Mg1/3Nb2/3)O3 ceramic. J Appl Phys 2007;102(8):084101.

Journal of Materiomics
Pages 634-640
Cite this article:
Hong C-H, Guo H, Tan X, et al. Polarization reversal via a transient relaxor state in nonergodic relaxors near freezing temperature. Journal of Materiomics, 2019, 5(4): 634-640. https://doi.org/10.1016/j.jmat.2019.06.004

99

Views

23

Crossref

N/A

Web of Science

26

Scopus

Altmetrics

Received: 18 April 2019
Revised: 07 June 2019
Accepted: 24 June 2019
Published: 25 June 2019
©2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return