AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent progress of nanomaterials for microwave absorption

Michael Green,Xiaobo Chen( )
Department of Chemistry, University of Missouri–Kansas City, Kansas City, MO, 64110, USA

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

Microwave absorbing materials have received considerable interest over the years for their applications in stealth, communications, and information processing technologies. These materials often require functionalization at the nanoscale so to achieve desirable dielectric and magnetic properties which induce interaction with incident electromagnetic radiation. This article presents a comprehensive review on the recent research progress of nanomaterials for microwave absorption, including the basic mechanism of microwave absorption (e.g., dielectric loss, magnetic loss, dielectric/magnetic loss coupling), measurement principle (e.g., fundamentals of analysis, performance evaluation, common interaction pathways: Debye relaxation, Eddy current loss, natural resonance, size and shape factors), and the advances and performance review in microwave absorption (e.g., absorption bandwidth, reflection loss values, absorption peak position) using various nanomaterials, such as carbon nanotubes, carbon fibers, graphenes, oxides, sulfides, phosphides, carbides, polymers and metal organic frameworks. Overall, this article not only provides an introduction on the fundamentals of microwave absorption research, but also presents a timely update on the research progress of the microwave absorption performance of various nanomaterials.

References

[1]

Lee Y, Kim E, Park Y, Kim J, Ryu W, Rho J, et al. Photodeposited metalsemiconductor nanocomposites and their applications. J Mater 2018;4: 83–94.

[2]

Cheng L-Q, Li J-F. A review on one dimensional perovskite nanocrystals for piezoelectric applications. J Mater 2016;2: 25–36.

[3]

Li Q, Danilkin S, Deng G, Li Z, Withers RL, Xu Z, et al. Soft phonon modes and diffuse scattering in Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectrics. J Mater 2018;4: 345–52.

[4]

Shen Z, Grüner D, Eriksson M, Belova LM, Nan C-W, Yan H. Ordered coalescence of nano-crystals in alkaline niobate ceramics with high remanent polarization. J Mater 2017;3: 267–72.

[5]

Wang L, Di Q, Sun M, Liu J, Cao C, Liu J, et al. Assembly-promoted photocatalysis: three-dimensional assembly of CdSxSe1-x (x = 0–1) quantum dots into nanospheres with enhanced photocatalytic performance. J Mater 2017;3: 63–70.

[6]

Xu Y-H, Zhao S-X, Deng Y-F, Deng H, Nan C-W. Improved electrochemical performance of 5 V spinel LiNi0.5Mn1.5O4 microspheres by F-doping and Li4SiO4 coating. J Mater 2016;2: 265–72.

[7]

Aravind G, Raghasudha M, Ravinder D. Electrical transport properties of nano crystalline Li–Ni ferrites. J Mater 2015;1: 348–56.

[8]

Wang J, Hu J, Yang L, Zhu K, Li B-W, Sun Q, et al. High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticles. J Mater 2018;4: 44–50.

[9]

Liu R, Wu Z, He P, Fan H, Huang Z, Zhang L, et al. A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries. J Mater 2018. https://doi.org/10.1016/j.jmat.2018.12.006.

[10]

Xiao E-C, Li J, Wang J, Xing C, Guo M, Qiao H, et al. Phonon characteristics and dielectric properties of BaMoO4 ceramic. J Mater 2018;4: 383–9.

[11]

Ayodhya D, Veerabhadram G. Fabrication of Schiff base coordinated ZnS nanoparticles for enhanced photocatalytic degradation of chlorpyrifos pesticide and detection of heavy metal ions. J Mater 2019. https://doi.org/10.1016/j.jmat.2019.02.002.

[12]

Sahoo MK, Kale P. Integration of silicon nanowires in solar cell structure for efficiency enhancement: a review. J Mater 2019;5: 34–48.

[13]

Kolavekar SB, Ayachit NH. Synthesis of praseodymium trioxide doped leadboro-tellurite glasses and their optical and physical properties. J Mater 2019. https://doi.org/10.1016/j.jmat.2019.01.010.

[14]

Kampylafka V, Kostopoulos A, Modreanu M, Schmidt M, Gagaoudakis E, Tsagaraki K, et al. Long-term stability of transparent n/p ZnO homojunctions grown by RF-sputtering at room-temperature. J Mater 2019. https://doi.org/10.1016/j.jmat.2019.02.006.

[15]

Chen F, Kong L, Song W, Jiang C, Tian S, Yu F, et al. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications. J Mater 2019;5: 73–80.

[16]

Ge P-Z, Jian X-D, Lin X-W, Tang X-G, Zhu Z, Liu Q-X, et al. Composition dependence of giant electrocaloric effect in PbxSr1-xTiO3 ceramics for energyrelated applications. J Mater 2019;5: 118–26.

[17]

Li J, Zhang X, Duan B, Cui Y, Yang H, Wang H, et al. Pressure induced convergence of conduction bands in Al doped Mg2Si: experiment and theory. J Mater 2019;5: 81–7.

[18]

Chauhan NS, Bathula S, Vishwakarma A, Bhardwaj R, Johari KK, Gahtori B, et al. Enhanced thermoelectric performance in p-type ZrCoSb based halfHeusler alloys employing nanostructuring and compositional modulation. J Mater 2019;5: 94–102.

[19]

Binas V, Stefanopoulos V, Kiriakidis G, Papagiannakopoulos P. Photocatalytic oxidation of gaseous benzene, toluene and xylene under UV and visible irradiation over Mn-doped TiO2 nanoparticles. J Mater 2019;5: 56–65.

[20]

Tian H, Xin F, Wang X, He W, Han W. High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J Mater 2015;1: 153–69.

[21]

Dahl M, Liu Y, Yin Y. Composite titanium dioxide nanomaterials. Chem Rev 2014;114: 9853–89.

[22]

Smith R, Gambhir S. Nanomaterials for in vivo imaging. Chem Rev 2017;117: 901–86.

[23]

Chen X, Selloni A. Introduction: titanium dioxide (TiO2) nanomaterials. Chem Rev 2014;114: 9281–2.

[24]

Fattakhova-Rohlfing D, Zaleska A, Bein T. Three-dimensional titanium dioxide Nanomaterials. Chem Rev 2014;114: 9487–558.

[25]

Aragay G, Pino F, Merkoçi A. Nanomaterials for sensing and destroying pesticides. Chem Rev 2012;112: 5317–38.

[26]

Yang X, Yang M, Pang B, Vara M, Xia Y. Gold nanomaterials at work in biomedicine. Chem Rev 2015;115: 10410–88.

[27]

Liu L, Chen X. Titanium dioxide nanomaterials: self-structural modifications. Chem Rev 2014;114: 9890–918.

[28]

Bai J, Zhou B. Titanium dioxide nanomaterials for sensor applications. Chem Rev 2014;114: 10131–76.

[29]

Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev 2014;114: 10869–939.

[30]

Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 2014;114: 9385–454.

[31]

Jing L, Kershaw S, Li Y, Huang X, Li Y, Rogach A, Gao M. Aqueous based semiconductor nanocrystals. Chem Rev 2016;116: 10623–730.

[32]

Bai Y, Mora-Seró I, De Angelis F, Bisquert J, Wang P. Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 2014;114: 10095–130.

[33]

Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 2018;118: 6337–408.

[34]

Chen A, Ostrom C. Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev 2015;115: 11999–2044.

[35]

Tan C, Cao X, Wu X, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 2017;117: 6225–331.

[36]

Teo B, Sun X. Silicon-based low-dimensional nanomaterials and nanodevices. Chem Rev 2007;107: 1454–532.

[37]

Hong G, Diao S, Antaris A, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 2015;115: 10816–906.

[38]

Chen X, Mao S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 2007;107: 2891–959.

[39]

Lim E, Kim T, Paik S, Haam S, Huh Y, Lee K. Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 2015;115: 327–94.

[40]

Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 2014;114: 9987–10043.

[41]

Wang X, Li Z, Shi J, Yu Y. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev 2014;114: 9346–84.

[42]

Cheng C, Li S, Thomas A, Kotov N, Haag R. Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev 2017;117: 1826–914.

[43]

Clancy A, Bayazit M, Hodge S, Skipper N, Howard C, Shaffer M. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem Rev 2018;118: 7363–408.

[44]

Kapilashrami M, Zhang Y, Liu Y, Hagfeldt A, Guo J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 2014;114: 9662–707.

[45]

Wu P, Hou X, Xu J, Chen H. Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev 2014;114: 11027–59.

[46]

Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 2014;114: 6130–78.

[47]

Guan L, Chen X. The photoexcited charge transport and accumulation in anatase TiO2. ACS Appl Energy Mater 2018;1: 4313–20.

[48]

Chen X, Liu L, Yu P, Mao S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011;331: 746–50.

[49]

Chen X, Li C, Grätzel M, Kostecki R, Mao S. Nanomaterials for renewable energy production and storage. Chem Soc Rev 2012;41: 7909–37.

[50]

Burda C, Chen X, Narayanan R, El-Sayed M. Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005;105: 1025–102.

[51]
Tong X. Advanced materials and design for electromagnetic interference shielding. CRC Press; 2009.
[52]
Chen L, Ong C, Neo C, Varadan V, Varadan V. Microwave electronics: measurement and materials characterization. John Wiley and Sons; 2005.
[53]
Pozar D. Microwave engineering. John Wiley and Sons; 2005.
[54]

Green M, Liu Z, Xiang P, Liu Y, Zhou M, Tan X, Huang F, Liu L, Chen X. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light Sci Appl 2018;7: 87.

[55]

Kumar A, Agarwala V, Singh D. Effect of milling on dielectric and microwave absorption properties of SiC based composites. Ceram Int 2014;40: 1797–806.

[56]

Wang P, Wang X, Qiao L, Zhang J, Wang G, Duan B, et al. High-frequency magnetic properties and microwave absorption performance of oxidized Pr2Co17 flakes/epoxy composite in x-band. J Magn Magn Mater 2018;468: 193–9.

[57]

Feng Y, Tang C, Qiu T. Effect of ball milling and moderate surface oxidization on the microwave absorption properties of FeSiAl composites. Mater Sci Eng B 2013;178: 1005–11.

[58]

Zheng H, Yao W, Sun H, Tong G. Highly enhanced microwave absorption properties of CoFeBSiNb metallic glasses through corrosion. J Magn Magn Mater 2018;468: 109–14.

[59]

Duan Y, Cui Y, Zhang B, Ma G, Tongmin W. A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J Alloy Comp 2019;773: 194–201.

[60]

Ding C, Cheng Y, Li XL, Peng CX, Wang L. Microwave absorption properties of Fe-based amorphous particles prepared using ball-milling method. J Electron Mater 2018;47: 5981–6.

[61]

Xia T, Zhang C, Oyler NA, Chen X. Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J Mater Res 2014;29: 2198–210.

[62]

Green M, Liu Z, Xiang P, Tan X, Huang F, Liu L, et al. Ferric metal-organic framework for microwave absorption. Mater Today Chem 2018;9: 140–8.

[63]

Yang Y, Xu C, Xia Y, Wang T, Li F. Synthesis and microwave absorption properties of FeCo nanoplates. J Alloy Comp 2010;493: 549–52.

[64]
Griffiths D. Introduction to electrodynamics. Cambridge University Press; 1999.
[65]
Von Hippel AR. Dielectric materials and applications. Artech House; 1954.
[66]

Qi X, Xu J, Hu Q, Deng Y, Xie R, Jiang Y, et al. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci Rep 2016;6: 1–11.

[67]

Naito Y, Suetake K. Application of ferrite to electromagnetic absorber and its characteristics Wave. IEEE Trans Microw Theory Tech 1971;19: 65–72.

[68]

Naito Y, Yin J, Mizumoto T. Electromagnetic wave absorbing properties of carbon-rubber doped with ferrite. Electron Commun Jpn Part Ⅱ Electron 1988;71: 77–83.

[69]
Balanis C. Advanced engineering electromagnetics. Wiley; 2012.
[70]

Wang C, Murugadoss V, Kong J, He Z, Mai X, Shao Q, Chen Y, Liu C, Angaiah S, Guo G. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018;140: 696–733.

[71]
Kasap S. Principles of electronic materials and devices. McGraw-Hill; 2018.
[72]

Song W-L, Zhang K-L, Chen M, Hou Z-L, Chen H, Yuan X, et al. A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: a case of graphene-based composites. Carbon 2017;118: 86–97.

[73]
Maxwell JC. A treatise on electricity and magnetism, vol. Ⅱ. Clarendon Press; 1873.
[74]
Kittel C. Introduction to solid state physics. Wiley; 2004.
[75]
Soohoo R. Microwave magnetics. Harper & Row Publishers; 1985.
[76]

Afghahi SSS, Jafarian M, Atassi Y. Microstructural and magnetic studies on BaMgxZnxX2xFe12-4xO19(X=Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band. J Magn Magn Mater 2016: 406.

[77]

Baker-Jarvis J. Transmission/reflection and short circuit line permittivity measurements. NIST Tech Note 1990: 1341.

[78]

Baker-Jarvis J, Janezic MD, Riddle BF, Johhnk RT, Kabos P, Holloway CL, et al. Measuring the permittivity and permeability of lossy materials: solids, liquids, metals, building material, and negative-index materials. NIST Tech Note 2005: 1536.

[79]
Baker-Jarvis J. Transmission/reflection and short-circuit line methods for measuring permittivity and permeability. NIST Tech Note 1993. 1355-R.
[80]
Orfanidis SJ. Electromagnetic waves and antennas. 2004.
[81]
Steer M. Microwave and RF design: a systems approach. Scitech Publishing; 2013.
[82]
Baker-Jarvis J, Janezic M, Riddle B, Holloway C, Paulter N, Blendell J. Dielectric and conductor-loss characterization and measurements on electronic packaging materials. 2001. p. 1520. NIST Tech Note.
[83]
Wakaki M. Optical materials and applications. CRC Press; 2013.
[84]
Fox M. Optical properties of solids. Oxford University Press; 2002.
[85]

Valenzuela AL, Vasquez-Medrano R, Ibanez JG, Frontana-Uribe BA, PratoGarcia D. Remediation of diquat-contaminated water by electrochemical advanced oxidation processes using boron-doped diamond (BDD) Anodes. Water Air Soil Pollut 2017;228: 67.

[86]

Fukada K, Matsumoto M, Takeyasu K, Ogura S, Fukutani K. Effects of hydrogen on the electronic state and electric conductivity of the rutile TiO2 (110) surface. J Phys Soc Japan 2015;84: 064716.

[87]

Nechiyil D, Muruganathan M, Mizuta H, Ramaprabhu S. Theoretical insights into the experimental observation of stable p-type conductivity and ferromagnetic ordering in vacuum-hydrogenated TiO2. J Phys Chem C 2017;121: 14359–66.

[88]

Green M, Tian L, Xiang P, Murowchick J, Tan X, Chen X. FeP nanoparticles: a new material for microwave absorption. Mater Chem Front 2018;2: 1119–25.

[89]

Green M, Tian L, Xiang P, Murowchick J, Tan X, Chen X. Co2P nanoparticles for microwave absorption. Mater Today Nano 2018;1: 1–7.

[90]
Sadiku MNO. Elements of electromagnetics. Oxford University Press; 2007.
[91]
Scott A. Understanding microwaves. Wiley-Interscience; 2005.
[92]

Naito Y. About the thickness of the ferrite absorption wall. Inst Electron Inf Commun Eng J B 1969;J25–B: 21–5.

[93]

Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microw Theory Tech 1971;19: 65–72.

[94]

Ferrite A, Naito Y, Mizumoto T. Effect of doping carbon in an electromagnetic wave. Electron Comm Japan Part Ⅱ Electron 1987;70: 257–61.

[95]

Meena R, Bhattachrya S, Chatterjee R. Development of "tuned microwave absorbers" ssing u-type hexaferrite. Mater Des 2010;31: 3220–6.

[96]
Duan Y, Guan H. Microwave absorbing materials. CRC Press; 2016.
[97]
Vinoy K, Jha R. Radar absorbing materials: from theory to design and characterization. Springer; 1996.
[98]

Li X, Feng J, Du Y, Bai J, Fan H, Zhang H, Peng Y, Li F. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J Mater Chem A 2015;3: 5535–46.

[99]

Yusoff AN, Abdullah MH, Ahmad SH, Jusoh SF, Mansor AA, Hamid SAA. Electromagnetic and absorption properties of some microwave absorbers. J Appl Phys 2002;92: 876.

[100]

Kim SS, Jo SB, Gueon KI, Choi KK, Kim JM, Churn KS. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite in X-band frequencies. IEEE Trans Magn 1991;27: 5462–4.

[101]

An YJ, Miura T, Okino H, Yamamoto T, Ueda S, Deguchi T. Dielectric and magnetic properties of a titanium oxide and carbonyl iron composite material and application as a microwave absorber. Jpn J Appl Phys 2004;43: 6759–64.

[102]

Liu Y, Zhao K, Drew MGB, Liu Y. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Adv 2018;8: 015223.

[103]

Musal HM, Hahn HT. Thin-layer electromagnetic absorber design. IEEE Trans Magn 1989;25: 3851–3.

[104]

Green M, Liu Z, Smedley R, Nawaz H, Li X, Huang F, et al. Graphitic carbon nitride nanosheets for microwave absorption. Mater Today Phys 2018;5: 78–86.

[105]

Green M, Xiang P, Liu Z, Murowchick J, Tan X, Huang F, et al. Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. J Mater 2018;5: 133–46.

[106]

Green M, Van Tran AT, Smedley R, Roach A, Murowchick J, Chen X. Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Mater Sci 2019;1: 48–59.

[107]

Saville P. Review of radar absorbing materials. Def R & D Canada – Atlantic. Def Res Dev Canada 2005: 62.

[108]

Zhao DL, Zhang JM, Li X, Shen ZM. Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes. J Alloy Comp 2010;505: 712–6.

[109]

Che RC, Peng L-M, Duan XF, Chen Q, Liang XL. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 2004;16: 401–5.

[110]

Lv R, Kang F, Gu J, Gui X, Wei J, Wang K, et al. Carbon nanotubes filled with ferromagnetic alloy nanowires: lightweight and wide-band microwave absorber. Appl Phys Lett 2008;93: 223105.

[111]

Zhao DL, Li X, Shen ZM. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J Alloy Comp 2009;471: 457–60.

[112]

Lin H, Zhu H, Guo H, Yu L. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes. Mater Lett 2007;61: 3547–50.

[113]

Che RC, Zhi CY, Liang CY, Zhou XG. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl Phys Lett 2006;88: 033105.

[114]

Zhang T, Zhong B, Yang JQ, Huang XX, Wen G. Boron and nitrogen doped carbon nanotubes/Fe3O4 composite architectures with microwave absorption property. Ceram Int 2015;41: 8163–70.

[115]

Shen P, Luo J, Zuo Y, Yan Z, Zhang K. Effect of La-Ni substitution on structural, magnetic and microwave absorption properties of barium ferrite. Ceram Int 2017;43: 4846–51.

[116]

Zhao DL, Li X, Shen ZM. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ag nanowires. Mater Sci Eng B 2008;150: 105–10.

[117]

Zou T, Li H, Zhao N, Shi C. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire. J Alloy Comp 2010;496: 22–4.

[118]

Xu P, Han XJ, Liu XR, Zhang B, Wang C, Wang XH. A study of the magnetic and electromagnetic properties of γ-Fe2O3-multiwalled carbon nanotubes (MWCNT) and Fe/Fe3C-MWCNT composites. Mater Chem Phys 2009;114: 556–60.

[119]

Zhang L, Zhu H, Song Y, Zhang Y, Huang Y. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers. Mater Sci Eng B 2008;153: 78–82.

[120]

Zhang L, Zhu H. Dielectric, magnetic, and microwave absorbing properties of multi-walled carbon nanotubes filled with Sm2O3 nanoparticles. Mater Lett 2009;63: 272–4.

[121]

Chu Z, Cheng H, Xie W, Sun L. Effects of diameter and hollow structure on the microwave absorption properties of short carbon fibers. Ceram Int 2012;38: 4867–73.

[122]

Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 2004;4: 933–8.

[123]

Cao MS, Song WL, Hou ZL, Wen B, Yuan J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010;48: 788–96.

[124]

Liu Y, Zhang Z, Xiao S, Qiang C, Tian L, Xu J. Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials. Appl Surf Sci 2011;257: 7678–83.

[125]

Wan Y, Xiao J, Li C, Xiong G, Guo R, Li L, et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J Magn Magn Mater 2016;399: 252–9.

[126]

Xiang J, Zhang X, Ye Q, Li J, Shen X. Synthesis and characterization of FeCo/C hybrid nanofibers with high performance of microwave absorption. Mater Res Bull 2014;60: 589–95.

[127]

Zhang Z, Xiangxuan Liu B, Haifeng Zhang B, Ersen Li B. Electromagnetic and microwave absorption properties of carbon fibers coated with carbonyl iron. J Mater Sci Mater Electron 2015;26: 6518–25.

[128]

Min D, Zhou W, Qing Y, Luo F, Zhu D. Highly oriented flake carbonyl iron/carbon fiber composite as thin-thickness and wide-bandwidth microwave absorber. J Alloy Comp 2018;744: 629–36.

[129]

Meng X, Wan Y, Li Q, Wang J, Luo H. The electrochemical preparation and microwave absorption properties of magnetic carbon fibers coated with Fe3O4 films. Appl Surf Sci 2011;257: 10808–14.

[130]

Zeng J, Fan H, Wang Y, Zhang S, Xue J, Zhang C. Oxidized electroplating zinccovered carbon fibers as microwave absorption materials. J Alloy Comp 2012;524: 59–62.

[131]

Yang N, Zeng J, Xue J, Zeng L, Zhao Y. Strong absorption and wide-frequency microwave absorption properties of the nanostructure zinc oxide/zinc/carbon fiber multilayer composites. J Alloy Comp 2018;735: 2212–8.

[132]

Zeng J, Xu J. Microwave absorption properties of CuO/Co/carbon fiber composites synthesized by thermal oxidation. J Alloy Comp 2010;493: 2009–11.

[133]

Gholampoor M, Movassagh-Alanagh F, Salimkhani H. Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sci 2017;64: 51–61.

[134]

Wang C, Han X, Xu P, Zhang X, Du Y, Hu S, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett 2011;98: 1–4.

[135]

Pawar SP, Gandi M, Arief I, Krause B, Pötschke P, Bose S. Graphene derivatives doped with nickel ferrite nanoparticles as excellent microwave absorbers in soft nanocomposites. Chem Select 2017;2: 5984–99.

[136]

Bai X, Zhai Y, Zhang Y. Green approach to prepare graphene-based composites with high microwave absorption capacity. J Phys Chem C 2011;115: 11673–7.

[137]

Chen X, Meng F, Zhou Z, Tian X, Shan L, Zhu S, et al. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 2014;6: 8140–8.

[138]

Kong L, Yin X, Zhang Y, Yuan X, Li Q, Ye F, et al. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J Phys Chem C 2013;117: 19701–11.

[139]

Sun X, He J, Li G, Tang J, Wang T, Guo Y, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 2013;1: 765–77.

[140]

Sun D, Zou Q, Qian G, Sun C, Jiang W, Li F. Controlled synthesis of porous Fe3O4-decorated graphene with extraordinary electromagnetic wave absorption properties. Acta Mater 2013;61: 5829–34.

[141]

Hu C, Mou Z, Lu G, Chen N, Dong Z, Hu M, et al. 3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 2013;15: 13038.

[142]

Wang L, Huang Y, Li C, Chen J, Sun X. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a highefficiency microwave absorber. Phys Chem Chem Phys 2015;17: 2228–34.

[143]

Song WL, Guan XT, Fan LZ, Zhao YB, Cao WQ, Wang CY, et al. Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 2016;100: 109–17.

[144]

Chen T, Deng F, Zhu J, Chen C, Sun G, Ma S, et al. Hexagonal and cubic Ni nanocrystals grown on graphene phase controlled synthesis, characterization and their enhanced microwave absorption properties. pdf. J Mater Chem 2012;22: 15190–7.

[145]

Zhu Z, Sun X, Li G, Xue H, Guo H, Fan X, et al. Microwave-assisted synthesis of graphene-Ni composites with enhanced microwave absorption properties in Ku-band. J Magn Magn Mater 2015;377: 95–103.

[146]

Zhang H, Tian X, Wang C, Luo H, Hu J, Shen Y, et al. Facile synthesis of RGO/NiO composites and their excellent electromagnetic wave absorption properties. Appl Surf Sci 2014;314: 228–32.

[147]

Shu R, Zhang G, Zhang J, Wang X, Wang M, Gan Y, et al. Synthesis and highperformance microwave absorption of reduced graphene oxide/zinc ferrite hybrid nanocomposite. Mater Lett 2018;215: 229–32.

[148]

Zong M, Huang Y, Ding X, Zhang N, Qu C, Wang Y. One-step hydrothermal synthesis and microwave electromagnetic properties of RGO/NiFe2O4 composite. Ceram Int 2014;40: 6821–8.

[149]

Li C, Huang Y, Chen J. Dopamine-assisted one-pot synthesis of graphene@Ni@C composites and their enhanced microwave absorption performance. Mater Lett 2015;154: 136–9.

[150]

Zhang XJ, Wang GS, Cao WQ, Wei YZ, Liang JF, Guo L, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl Mater Interfaces 2014;6: 7471–8.

[151]

Liu P, Huang Y, Wang L, Zong M, Zhang W. Hydrothermal synthesis of reduced graphene oxide-Co3O4 composites and the excellent microwave electromagnetic properties. Mater Lett 2013;107: 166–9.

[152]

Sun D, Zou Q, Wang Y, Wang Y, Jiang W, Li F. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 2014;6: 6557–62.

[153]

Zong M, Huang Y, Wu H, Zhao Y, Wang Q, Sun X. One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater Lett 2014;114: 52–5.

[154]

Zong M, Huang Y, Zhang N. Reduced graphene oxide-CoFe2O4 composite: synthesis and electromagnetic absorption properties. Appl Surf Sci 2015;345: 272–8.

[155]

Zhang N, Huang Y, Zong M, Ding X, Li S, Wang M. Coupling CoFe2O4 and SnS2 nanoparticles with reduced graphene oxide as a high-performance electromagnetic wave absorber. Ceram Int 2016;42: 15701–8.

[156]

Wang Y, Chen D, Yin X, Xu P, Wu F, He M. Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 2015;7: 26226–34.

[157]

Luo J, Shen P, Yao W, Jiang C, Xu J. Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett 2016;11.

[158]

Liu P, Yao Z, Zhou J. Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites. Ceram Int 2016;42: 9241–9.

[159]

Biswas S, Arief I, Panja SS, Bose S. Absorption-dominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon. ACS Appl Mater Interfaces 2017;9: 3030–9.

[160]

Qing Y, Min D, Zhou Y, Luo F, Zhou W. Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 2015;86: 98–107.

[161]

Shu R, Li W, Zhou X, Tian D, Zhang G, Gan Y, et al. Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites. J Alloy Comp 2018;743: 163–74.

[162]

Song C, Yin X, Han M, Li X, Hou Z, Zhang L, et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017;116: 50–8.

[163]

Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H, et al. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 2015;27: 2049–53.

[164]

Zhang Y, Huang Y, Chen H, Huang Z, Yang Y, Xiao P, Zhou Y, Chen Y. Composition and structure control of ultralight graphene foam for highperformance microwave absorption. Carbon 2016;105: 438–47.

[165]

Liu X, Guo H, Xie Q, Luo Q, Wang L, Peng D. Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials. J Alloy Comp 2015;649: 537–43.

[166]

Du Y, Liu T, Yu B, Gao H, Xu P, Wang J, et al. The electromagnetic properties and microwave absorption of mesoporous carbon. Mater Chem Phys 2012;135: 884–91.

[167]

Zhou J, He J, Li G, Wang T, Sun D, Ding X, et al. Direct incorporation of magnetic constituents within ordered mesoporous carbon-silica nanocomposites for highly efficient electromagnetic wave absorbers. J Phys Chem C 2010;114: 7611–7.

[168]

Zhao DL, Shen ZM. Preparation and microwave absorption properties of carbon nanocoils. Mater Lett 2008;62: 3704–6.

[169]

Qi X, Yang Y, Zhong W, Qin C, Deng Y, Au C, et al. Simultaneous synthesis of carbon nanobelts and carbon/Fe-Cu hybrids for microwave absorption. Carbon 2010;48: 3512–22.

[170]

Fan Y, Yang H, Li M, Zou G. Evaluation of the microwave absorption property of flake graphite. Mater Chem Phys 2009;115: 696–8.

[171]

Wu KH, Ting TH, Wang GP, Ho WD, Shih CC. Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stab 2008;93: 483–8.

[172]

Meng F, Wei W, Chen X, Xu X, Jiang M, Jun L, et al. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys Chem Chem Phys 2016;18: 2510–6.

[173]

Wu H, Wang L, Wang Y, Guo S, Shen Z. Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles. J Alloy Comp 2012;525: 82–6.

[174]

Yuan J, Yang HJ, Hou ZL, Song WL, Xu H, Kang YQ, et al. Ni-decorated SiC powders: enhanced high-temperature dielectric properties and microwave absorption performance. Powder Tech 2013;237: 309–13.

[175]

Yang HJ, Cao WQ, Zhang DQ, Su TJ, Shi HL, Wang WZ, et al. NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces 2015;7: 7073–7.

[176]

Li Y, Wang R, Qi F, Wang C. Preparation, characterization and microwave absorption properties of electroless Ni-Co-P-coated SiC powder. Appl Surf Sci 2008;254: 4708–15.

[177]

Kuang B, Dou Y, Wang Z, Ning M, Jin H, Guo D, et al. Enhanced microwave absorption properties of Co-doped SiC at elevated temperature. Appl Surf Sci 2018;445: 383–90.

[178]

Hou Y, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z, et al. Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption. ACS Appl Mater Interfaces 2017;9: 7265–71.

[179]

Kuang J, Jiang P, Ran F, Cao W. Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers. J Alloy Comp 2016;687: 227–31.

[180]

Liu X, Zhang Z, Wu Y. Absorption properties of carbon black/silicon carbide microwave absorbers. Compos Part B Eng 2011;42: 326–9.

[181]

Xie S, Jin GQ, Meng S, Wang YW, Qin Y, Guo XY. Microwave absorption properties of in situ grown CNTs/SiC composites. J Alloy Comp 2012;520: 295–300.

[182]

Zhao JM, An WX, Li DA, Yang X. Synthesis and microwave absorption properties of SiC-carbon fibers composite in S and C band. Synth Met 2011;161: 2144–8.

[183]

Jiang Y, Chen Y, Liu YJ, Sui GX. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem Eng J 2018;337: 522–31.

[184]

Nowotny MK, Bak T, Nowotny J. Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity. J Phys Chem B 2006;110: 16270–82.

[185]
O'Brien P. Nanosciencevol. 1. RSC Publishing; 2014.
[186]
Wu J, Cao J, Han W, Janotti A, Kim H. Functional metal oxide nanostructures. Springer Ser. Mater. Sci.; 2012.
[187]

Yong X, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 2000;85: 543–56.

[188]

Pinna N, Hochepied JF, Niederberger M, Gregg M. Chemistry and physics of metal oxide nanostructures. Phys Chem Chem Phys 2009;11: 3607.

[189]

Diebold U, Li S-C, Schmid M. Oxide surface science. Annu Rev Phys Chem 2010;61: 129–48.

[190]
Nesse W. Introduction to mineralogy. Oxford University Press; 1999.
[191]

Dong J, Ullal R, Han J, Wei S, Ouyang X, Donga J, et al. Partially crystallized TiO2 for microwave absorption. J Mater Chem A 2015: 5285–8.

[192]

Sun C, Jia Y, Yang XH, Yang HG, Yao X, Lu GQ, et al. Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. J Phys Chem C 2011;115: 25590–4.

[193]

Cullity BD. Elements of X-ray diffraction. Pearson; 2001.

[194]

Ni S, Lin S, Pan Q, Yang F, Huang K, He D. Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J Phys D Appl Phys 2009;42: 055004.

[195]

Ni S, Sun X, Wang X, Zhou G, Yang F, Wang J, et al. Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater Chem Phys 2010;124: 353–8.

[196]

Yan A, Liu Y, Liu Y, Li X, Lei Z, Liu P. A NaAc-assisted large-scale coprecipitation synthesis and microwave absorption efficiency of Fe3O4 nanowires. Mater Lett 2012;68: 402–5.

[197]

Zou Z, Xuan AG, Yan ZG, Wu YX, Li N. Preparation of Fe3O4 particles from copper/iron ore cinder and their microwave absorption properties. Chem Eng Sci 2010;65: 160–4.

[198]

Li X, Han X, Tan Y, Xu P. Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles. J Alloy Comp 2008;464: 352–6.

[199]

Zhao DL, Lv Q, Shen ZM. Fabrication and microwave absorbing properties of Ni-Zn spinel ferrites. J Alloy Comp 2009;480: 634–8.

[200]

Chen BY, Chen D, Kang ZT, Zhang YZ. Preparation and microwave absorption properties of Ni-Co nanoferrites. J Alloy Comp 2015;618: 222–6.

[201]

Bayrakdar H. Complex permittivity, complex permeability and microwave absorption properties of ferrite-paraffin polymer composites. J Magn Magn Mater 2011;323. 1882–5.

[202]

Li Y, Yang HJ, Yang WG, Hou ZL, Li JB, Jin HB, et al. Structure, ferromagnetism and microwave absorption properties of la substituted BiFeO3 nanoparticles. Mater Lett 2013;111: 130–3.

[203]

Ma RT, Zhao HT, Zhang G. Preparation, characterization and microwave absorption properties of polyaniline/Co0.5Zn0.5Fe2O4 nanocomposite. Mater Res Bull 2010;45: 1064–8.

[204]

Du M, Yao Z, Zhou J, Liu P, Yao T, Yao R. Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li0.35Zn0.3Fe2.35O4 nanocomposite. Synth Met 2017;223: 49–57.

[205]

Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces 2014;6: 12997–3006.

[206]

Cheng Y, Zhao H, Yang Z, Lv J, Cao J, Qi X, et al. An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption. J Alloy Comp 2018;762: 463–72.

[207]

Liu Y, Fu Y, Liu L, Li W, Guan J, Tong G. Low-Cost Carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption. ACS Appl Mater Interfaces 2018;10: 16511–20.

[208]

Wu T, Liu Y, Zeng X, Cui T, Zhao Y, Li Y, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl Mater Interfaces 2016;8: 7370–80.

[209]

Yin P, Deng Y, Zhang L, Huang J, Li H, Li Y, et al. The microwave absorbing properties of ZnO/Fe3O4/paraffin composites in low frequency band. Mater Res Exp 2018;5: 026109.

[210]

Han Z, Li D, Liu X, Geng D, Li J, Zhang Z. Microwave-absorption properties of Fe(Mn)/ferrite nanocapsules. J Phys D Appl Phys 2009;42: 055008.

[211]

Meng F, Zhao R, Zhan Y, Lei Y, Zhong J, Liu X. Preparation and microwave absorption properties of Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres. Appl Surf Sci 2011;257: 5000–6.

[212]

Wang Y, Peng Z, Jiang W. Controlled synthesis of Fe3O4@SnO2/RGO nanocomposite for microwave absorption enhancement. Ceram Int 2016;42: 10682–9.

[213]

Shams Alam R, Moradi M, Nikmanesh H, Ventura J, Rostami M. Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12-4xO19 hexaferrite nanoparticles. J Magn Magn Mater 2016;402: 20–7.

[214]

Moitra D, Dhole S, Ghosh BK, Chandel M, Jani RK, Patra MK, et al. Synthesis and microwave absorption properties of BiFeO3 nanowire-RGO nanocomposite and first-principles calculations for insight of electromagnetic properties and electronic structures. J Phys Chem C 2017;139: 21290–304.

[215]

Xu F, Ma L, Gan M, Tang J, Li Z, Zheng J, et al. Preparation and characterization of chiral polyaniline/barium hexaferrite composite with enhanced microwave absorbing properties. J Alloy Comp 2014;593: 24–9.

[216]

Li Y, Cao WQ, Yuan J, Wang DW, Cao MS. Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic-dielectric synergy. J Mater Chem C 2015;3: 9276–82.

[217]

Meng P, Xiong K, Wang L, Li S, Cheng Y, Xu G. Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1-xTiFe10O19. J Alloy Comp 2015;628: 75–80.

[218]

Meng P, Xiong K, Ju K, Li S, Xu G. Wideband and enhanced microwave absorption performance of doped barium ferrite. J Magn Magn Mater 2015;385: 407–11.

[219]

Chen W, Zheng J, Li Y. Synthesis and electromagnetic characteristics of BaFe12O19/ZnO composite material. J Alloy Comp 2012;513: 420–4.

[220]

Chang S, Kangning S, Pengfei C. Microwave absorption properties of Cesubstituted M-type barium ferrite. J Magn Magn Mater 2012;324: 802–5.

[221]

Tyagi S, Baskey HB, Agarwala RC, Agarwala V, Shami TC. Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceram Int 2011;37: 2631–41.

[222]

Kiani E, Rozatian ASH, Yousefi MH. Structural, magnetic and microwave absorption properties of SrFe12–2x(Mn0.5Cd0.5Zr)xO19 ferrite. J Magn Magn Mater 2014;361: 25–9.

[223]

Zhang Z, Liu X, Wang X, Wu Y, Li R. Effect of Nd-Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexaferrites. J Alloy Comp 2012;525: 114–9.

[224]

Iqbal MJ, Khan RA, Takeda S, Mizukami S, Miyazaki T. W-type hexaferrite nanoparticles: a consideration for microwave attenuation at wide frequency band of 0.5-10 GHz. J Alloy Comp 2011;509: 7618–24.

[225]

Feng YB, Qiu T, Shen CY. Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J Magn Magn Mater 2007;318: 8–13.

[226]

Deng L, Ding L, Zhou K, Huang S, Hu Z, Yang B. Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+. J Magn Magn Mater 2011;323. 1895–8.

[227]

Huang X, Chen J, Zhang J, Wang L, Zhang Q. A new microwave absorber based on antimony-doped tin oxide and ferrite composite with excellent electromagnetic match. J Alloy Comp 2010;506: 347–50.

[228]

Meena RS, Bhattachrya S, Chatterjee R. Complex permittivity, permeability and wide band microwave absorbing property of La3+ substituted U-type hexaferrite. J Magn Magn Mater 2010;322: 1923–8.

[229]

Duan Y, Ma H, Li X, Liu S, Ji Z. The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures. Phys B 2010;405: 1826–31.

[230]

Zhou M, Zhang X, Wei J, Zhao S, Wang L, Feng B. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J Phys Chem C 2011;115: 1398–402.

[231]

Yan D, Cheng S, Zhuo RF, Chen JT, Feng JJ, Feng HT, et al. Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 2009;20: 105706.

[232]

Cheng YL, Dai JM, Zhu XB, Wu DJ, Yang ZR, Sun YP. Enhanced microwave absorption properties of intrinsically core/shell structured La0.6Sr0.4MnO3 nanoparticles. Nanoscale Res Lett 2009;4: 1153–8.

[233]

Li Y, Cheng H, Wang N, Zhou Y, Li T. Magnetic and microwave absorption properties of Fe/TiO2 nanocomposites prepared by template electrodeposition. J Alloy Comp 2018;763: 421–9.

[234]

Xia T, Zhang C, Oyler NA, Chen X. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 2013;25: 6905–10.

[235]

Tian L, Xu J, Just M, Green M, Liu L, Chen X. Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: from optical to infrared and microwave. J Mater Chem C 2017;5: 4645–53.

[236]

Wang T, He J, Zhou J, Tang J, Guo Y, Ding X, et al. Microwave absorption properties and infrared emissivities of ordered mesoporous C–TiO2 nanocomposites with crystalline framework. J Solid State Chem 2010;183: 2797–804.

[237]

Jing L, Wang G, Duan Y, Jiang Y. Synthesis and electromagnetic characteristics of the flake-shaped barium titanate powder. J Alloy Comp 2009;475: 862–8.

[238]

Shi G-M, Li Y-F, Ai L, Shi F-N. Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites. J Alloy Comp 2016;680: 735–43.

[239]

Tian L, Yan X, Xu J, Wallenmeyer P, Murowchick J, Liu L, et al. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J Mater Chem A 2015;3: 12550–6.

[240]

Chen YJ, Cao MS, Wang TH, Wan Q. Microwave absorption properties of the ZnO nanowire-polyester composites. Appl Phys Lett 2004;84: 3367–9.

[241]

Cao M-S, Shi X-L, Fang X-Y, Jin H-B, Hou Z-L, Zhou W, et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl Phys Lett 2007;91: 203110.

[242]

ur Rehman S, Liu J, Ahmed R, Bi H. Synthesis of composite of ZnO spheres with polyaniline and their microwave absorption properties. J Saudi Chem Soc 2019;23: 385–91.

[243]

Wang ZH, Jiang LW, Li D, Jiang JJ, Ma S, Wang H, et al. Permittivity and permeability of Zn(Fe)/ZnO nanocapsules and their microwave absorption in the 2-18GHz range. J Appl Phys 2014;115: 1–4.

[244]

Wang G, Peng X, Yu L, Wan G, Lin S, Qin Y. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition. J Mater Chem A 2015;3: 2734–40.

[245]

Han M, Yin X, Kong L, Li M, Duan W, Zhang L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater Chem A 2014;2: 16403–9.

[246]

Zhang L, Zhang X, Zhang G, Zhang Z, Liu S, Li P, et al. Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv 2015;5: 10197–203.

[247]

Zhao B, Shao G, Fan B, Xie Y, Sun B, Zhang R. Preparation and microwave absorption of porous hollow ZnO by CO2 soft-template. Adv Powder Technol 2014;25: 1761–6.

[248]

Zhuo RF, Feng HT, Chen JT, Yan D, Feng JJ, Li HJ, et al. Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures. J Phys Chem C 2008;112: 11767–75.

[249]

Li H, Huang Y, Sun G, Yan X, Yang Y, Wang J, et al. Directed growth and microwave absorption property of crossed ZnO netlike micro-/nano-structures. J Phys Chem C 2010;114: 10088–91.

[250]

Xia T, Cao Y, Oyler NA, Murowchick J, Liu L, Chen X. Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl Mater Interfaces 2015;7: 10407–13.

[251]

Duan W, Yin X, Luo C, Kong J, Ye F, Pan H. Microwave-absorption properties of SiOC ceramics derived from novel hyperbranched ferrocene-containing polysiloxane. J Eur Ceram Soc 2017;37: 2021–30.

[252]

Kong L, Yin X, Zhang L, Cheng L. Effect of aluminum doping on microwave absorption properties of ZnO/ZrSiO4 composite ceramics. J Am Ceram Soc 2012;95: 3158–65.

[253]

Wei J, Wang J, Liu Q, Qiao L, Wang T, Li F. Enhanced microwave absorption properties of Fe3Al/Al2O3 fine particle composites. J Phys D Appl Phys 2010;43: 115001.

[254]

Zhang ZD, Shi ZC, Fan RH, Gao M, Guo JY, Qi XG, et al. Microwave absorption properties of Fe@Al2O3 nanoembedments prepared by mechanosynthesis. Mater Chem Phys 2011;130: 615–8.

[255]

Su X, Ning J, Jia Y, Liu Y. Flower-like MoS2 nanospheres: a promising material with good microwave absorption property in the frequency range of 8.2–12.4 GHz. Nano 2018;13: 1850084.

[256]

Zhang X, Li S, Wang S, Yin Z, Zhu J, Guo A, Guo L. Self-supported construction of three-dimensional MoS2 hierarchical nanospheres with tunable highperformance microwave absorption in broadband. J Phys Chem C 2016;120(38): 22019–27.

[257]

Ning M, Lu M, Li J, Chen Z, Dou Y, Wang C, Jin H. Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015;7(38): 15734–40.

[258]

Ding X, Huang Y, Li S, Zhang N, Wang J. 3D architecture reduced graphene oxide-MoS2 composite: preparation and excellent electromagnetic wave absorption performance. Comp Part A Appl Sci Manuf 2016;90: 424–32.

[259]

Wang Y, Chen D, Yin X, Xu P, Wu F, He M. Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 2015;7(47): 26226–34.

[260]

Ning M, Kuang B, Hou Z, Wang L, Li J, Zhao Y, Jin H. Layer by layer 2D MoS2/rGO hybrids: an optimized microwave absorber for high-efficient microwave absorption. Appl Surf Sci 2019;470: 899–907.

[261]

Zhang F, Zhang W, Zhu W, Cheng B, Qiu H, Qi S. Core-shell nanostructured CS/MoS2: a promising material for Microwave absorption. Appl Surf Sci 2019;463: 182–9.

[262]

Zhang W, Zhang X, Wu H, Yan H, Qi S. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J Alloy Comp 2018;751: 34–42.

[263]

Chai J, Zhang D, Cheng J, Jia Y, Ba X, Gao Y, Cao M. Facile synthesis of highly conductive MoS2/graphene nanohybrids with hetero-structures as excellent microwave absorbers. RSC Adv 2018;8(64): 36616–24.

[264]

Zhang Z, Wang Z, Heng L, Wang S, Chen X, Fu X, Zou Y, Tang Z. Improving the electromagnetic wave absorption properties of the layered MoS2 by cladding with Ni nanoparticles. J Phy Soc Jpn 2018;87(5): 054402.

[265]

Zhou C, Wu C, Yan M. Hierarchical FeCo@MoS2 nanoflowers with strong electromagnetic wave absorption and broad bandwidth. ACS Appl Nano Mater 2018;1: 5179–87.

[266]

Dai J, Yang H, Wen B, Zhou H, Wang L, Lin Y. Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber. Appl Surf Sci 2019;479: 1226–35.

[267]

Gu J, Xie Y, Chen W, Hu C, Qiao F, Xu Z, Liu X, Zhao X, Zhang G. Inter-diffusion of Cu2+ ions to CuS nanocrystals and the confinement effect on microwave absorption properties. CrystEngComm 2018;20: 6565–72.

[268]

Zhao B, Guo X, Zhou Y, Su T, Ma C, Zhang R. Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wideband microwave absorbers. CrystEngComm 2017;19(16): 2178–86.

[269]

Wei Y, Wang G, Wu Y, Yue Y, Wu J, Lu C, Guo L. Bioinspired design and assembly of platelet reinforced polymer films with enhanced absorption properties. J Mater Chem A 2014;2(15): 5516–24.

[270]

Zhao B, Shao G, Fan B, Zhao W, Xie Y, Zhang R. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J Mater Chem A 2015;3(19): 10345–52.

[271]

He S, Wang G, Lu C, Liu J, Wen B, Liu H, Guo L, Cao M. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J Mater Chem A 2013;1(15): 4685.

[272]

Huang T, He M, Zhou Y, Li S, Ding B, Pan W, Huang S, Tong Y. Solvothermal synthesis of flower-like CoS hollow microspheres with excellent microwave absorption properties. RSC Adv 2016;6(102): 100392–400.

[273]

Zhang X, Zhu J, Yin P, Guo A, Huang A, Guo L, Wang. Tunable highperformance microwave absorption of Co1-xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv Funct Mater 2018: 1800761.

[274]

Huang T, He M, Zhou Y, Li S, Ding B, Pan W, Huang S, Tong Y. Solvothermal fabrication of CoS nanoparticles anchored on reduced graphene oxide for high-performance microwave absorption. Synth Met 2017;224: 46–55.

[275]

Zhang C, Wang B, Xiang J, Su C, Mu C, Wen F, Liu Z. Microwave absorption properties of CoS2 nanocrystals embedded into reduced graphene oxide. ACS Appl Mater Interfaces 2017;9(34): 28868–75.

[276]

Huang T, He M, Zhou Y, Pan W, Li S, Ding B, Huang S, Tong Y. Fabrication and microwave absorption of multiwalled carbon nanotubes anchored with CoS nanoplates. J Mater Sci Mater Electron 2017;28(11): 7622–32.

[277]

Wang C, Mu C, Xiang J, Wang B, Zhang C, Song J, Wen F. Microwave synthesized In2S3@CNTs with excellent properties in lithium-ion battery and electromagnetic wave absorption. Chin J Chem 2018;36(2): 157–61.

[278]

Zhao B, Shao G, Fan B, Zhao W, Zhang S, Guan K, Zhang R. In situ synthesis of novel urchin-like ZnS/Ni3S2@Ni composite with a core–shell structure for efficient electromagnetic absorption. J Mater Chem C 2015;3(41): 10862–9.

[279]

Zhang X, Wang S, Wang G, Li Z, Guo A, Zhu J, Liu D, Yin P. Facile synthesis of NiS2@MoS2 core–shell nanospheres for effective enhancement in microwave absorption. RSC Adv 2017;7(36): 22454–60.

[280]

Chen D, Quan H, Wang G, Guo L. Hollow α-MnS spheres and their hybrids with reduced graphene oxide: synthesis, microwave absorption, and lithium storage properties. ChemPlusChem 2013;78(8): 843–51.

[281]

Zhang Z, Lv X, Chen Y, Zhang P, Sui M, Liu H, Sun X. NiS2@MoS2 nanospheres anchored on reduced graphene oxide: a novel ternary heterostructure with enhanced electromagnetic absorption property. Nanomaterials 2019;9(2): 292.

[282]

Zhou S, Huang Y, Xu L, Zheng W. Microwave-assisted synthesis of graphene-NiS/Ni3S2 composites for enhanced microwave absorption behaviors through a sulfuration method. Ceram Int 2019;44(17): 21786–93.

[283]

Tian L, Yan X, Chen X. Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal 2016;6: 5441–8.

[284]

Tian L, Yan X, Chen X, Liu L, Chen X. One-pot, large-scale, simple synthesis of CoxP nanocatalysts for electrochemical hydrogen evolution. J Mater Chem A 2016;4: 13011–6.

[285]

Olmedo BL, Hourquehie P, Jousse F. Microwave absorbing materials based on conducting polymers. Adv Mater 1993;5: 373–7.

[286]

She W, Bi H, Wen Z, Liu Q, Zhao X, Zhang J, et al. Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography. ACS Appl Mater Interfaces 2016;8: 9782–9.

[287]

Yu L, Zhu Y, Fu Y. Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption. Appl Surf Sci 2018;427: 451–7.

[288]

Tian C, Du Y, Xu P, Qiang R, Wang Y, Ding D, et al. Constructing uniform coreshell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 2015;7: 20090–9.

[289]

Yang CC, Gung YJ, Hung WC, Ting TH, Wu KH. Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites. Compos Sci Technol 2010;70: 466–71.

[290]

Ting TH, Wu KH. Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J Magn Magn Mater 2010;322: 2160–6.

[291]

Yang H, Ye T, Lin Y, Liu M. Excellent microwave absorption property of ternary composite: polyaniline-BaFe12O19-CoFe2O4 powders. J Alloy Comp 2015;653: 135–9.

[292]

Wang M, Ji G, Zhang B, Tang D, Yang Y, Du Y. Controlled synthesis and microwave absorption properties of Ni0.6Zn0.4Fe2O4/PANI composite via an insitu polymerization process. J Magn Magn Mater 2015;377: 52–8.

[293]

Jianjun H, Yuping D, Jia Z, Hui J, Shunhua L, Weiping L. γ-MnO2/polyaniline composites: preparation, characterization, and applications in microwave absorption. Phys B Condens Matter 2011;406. 1950–5.

[294]

Chen K, Xiang C, Li L, Qian H, Xiao Q, Xu F. A novel ternary composite: fabrication, performance and application of expanded graphite/polyaniline/CoFe2O4 ferrite. J Mater Chem 2012;22: 6449–55.

[295]

Liu P, Huang Y, Zhang X. Cubic NiFe2O4 particles on graphene-polyaniline and their enhanced microwave absorption properties. Compos Sci Technol 2015;107: 54–60.

[296]

Liu Z, Bai G, Huang Y, Li F, Ma Y, Guo T, et al. Microwave absorption of singlewalled carbon nanotubes/soluble cross-linked polyurethane composites. J Phys Chem C 2007;111: 13696–700.

[297]

Fan Z, Luo G, Zhang Z, Zhou L, Wei F. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B 2006;132: 85–9.

[298]

Wang Y, Zhang W, Luo C, Wu X, Yan G. Superparamagnetic FeCo@SnO2 nanoparticles on graphene-polyaniline: synthesis and enhanced electromagnetic wave absorption properties. Ceram Int 2016;42: 12496–502.

[299]

Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun 2003;0: 927–34.

[300]

McHenry ME, Laughlin DE. Magnetic properties of metals and alloys. Phys Met 2014: 1881–2008.

[301]

Burkert T, Nordström L, Eriksson O, Heinonen O. Giant magnetic anisotropy in tetragonal FeCo alloys. Phys Rev Lett 2004;93: 027203.

[302]

Hauser JJ. Magnetic properties of Cu-Mn and Cu-Fe alloys. Phys Rev B 1972;5: 110–5.

[303]

Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Manosa L, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 2005;4: 450–4.

[304]

Si Y, Liu J, Gong Y, Yuan S, Peng G, Xu G, et al. Magnetostructural transformation and magnetocaloric effect of Sn-bonded Mn0.66Fe0.34Ni0.66Fe0.34-Si0.66Ge0.34 composite. Sci Rep 2018;8: 19.

[305]
Zhang W, Bie S, Chen H, Lu Y, Jiang J. Electromagnetic and microwave absorption properties of carbonyl iron/MnO2 composite. J Magn Magn Mater 2014: 1–4. 358–359.
[306]

Wang Y, Zhang W, Luo C, Wu X, Yan G, Chen W. Fabrication and highperformance microwave absorption of Ni@SnO2@PPy Core-Shell composite. Synth Met 2016;220: 347–55.

[307]

Xu Y, Zhang D, Cai J, Yuan L, Zhang W. Effects of multi-walled carbon nanotubes on the electromagnetic absorbing characteristics of composites filled with carbonyl iron particles. J Mater Sci Technol 2012;28: 34–40.

[308]

Zhao X, Zhang Z, Wang L, Xi K, Cao Q, Wang D, et al. Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci Rep 2013;3: 1–5.

[309]

Wu X, Luo H, Wan Y. Preparation of SnO2-coated carbonyl iron flaky composites with enhanced microwave absorption properties. Mater Lett 2013;92: 139–42.

[310]

Qing Y, Zhou W, Luo F, Zhu D. Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption. J Magn Magn Mater 2011;323: 600–6.

[311]

Shi G, Zhang B, Wang X, Fu Y. Enhanced microwave absorption properties of core double-shell type Fe@C@BaTiO3 nanocapsules. J Alloy Comp 2016;655: 130–7.

[312]

Qiang R, Du Y, Zhao H, Wang Y, Tian C, Li Z, et al. Metal organic frameworkderived Fe/C nanocubes toward efficient microwave absorption. J Mater Chem A 2015;3: 13426–34.

[313]

Duan Y, Wu G, Gu S, Li S, Ma G. Study on microwave absorbing properties of carbonyl-iron composite coating based on PVC and Al sheet. Appl Surf Sci 2012;258: 5746–52.

[314]

Ni X, Zheng Z, Hu X, Xiao X. Silica- Study on microwave absorbing properties of carbonyl-iron composite coating based on PVC and Al sheet coated iron nanocubes: preparation, characterization and application in microwave absorption. J Colloid Interface Sci 2010;341: 18–22.

[315]

Yan L, Wang J, Han X, Ren Y, Liu Q, Li F. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 2010;21: 095708.

[316]

Liu XG, Geng DY, Meng H, Shang PJ, Zhang ZD. Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl Phys Lett 2008;92. 2006–9.

[317]

Li Y, Wang J, Liu R, Zhao X, Wang X, Zhang X, et al. Dependence of gigahertz microwave absorption on the mass fraction of Co@C nanocapsules in composite. J Alloy Comp 2017;724: 1023–9.

[318]

Ding D, Wang Y, Li X, Qiang R, Xu P, Chu W, et al. Rational design of coreshell Co@C microspheres for high-performance microwave absorption. Carbon 2017;111: 722–32.

[319]

Zhao B, Zhao W, Shao G, Fan B, Zhang R. Morphology-control synthesis of a core-shell structured NiCu alloy with tunable electromagnetic-wave absorption capabilities. ACS Appl Mater Interfaces 2015;7: 12951–60.

[320]

Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 2016;28: 486–90.

[321]

Zhou S, Huang Y, Liu X, Yan J, Feng X. Synthesis and microwave absorption enhancement of CoNi@SiO2@C hierarchical structures. Ind Eng Chem Res 2018;57: 5507–16.

[322]

Luo J, Pan S, Cheng L, Lin P, He Y, Chang J. Electromagnetic and microwave absorption properties of Er-Ho-Fe alloys. J Rare Earths 2018;36: 715–20.

[323]

Gong YX, Zhen L, Jiang JT, Xu CY, Shao WZ. Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance. J Magn Magn Mater 2009;321: 3702–5.

[324]

Liu XG, Geng DY, Zhang ZD. Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules. Appl Phys Lett 2008;92: 1–4.

[325]

Cheng Y, Ji G, Li Z, Lv H, Liu W, Zhao Y, et al. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J Alloy Comp 2017;704: 289–95.

[326]

Liu Y, Luo F, Su J, Zhou W, Zhu D. Electromagnetic and microwave absorption properties of the Nickel/Ti3SiC2 hybrid powders in X-band. J Magn Magn Mater 2014;365: 126–31.

[327]

Liu X, Feng C, Or SW, Jin C, Xiao F, Xia A, et al. Synthesis and electromagnetic properties of Al/AlOx-coated Ni nanocapsules. Mater Res Bull 2013;48: 3887–91.

[328]

Sun Y, Liu X, Feng C, Fan J, Lv Y, Wang Y, et al. A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J Alloy Comp 2014;586: 688–92.

[329]

Liu XG, Ou ZQ, Geng DY, Han Z, Wang H, Li B, et al. Enhanced absorption bandwidth in carbon-coated supermalloy FeNiMo nanocapsules for a thin absorb thickness. J Alloy Comp 2010;506: 826–30.

[330]

Liu Q, Xu X, Xia W, Che R, Chen C, Cao Q, et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015;7: 1736–43.

[331]

Li Z, Shen B, Deng Y, Liu L, Hu W. Preparation and microwave absorption properties of electroless Co-P-coated nickel hollow spheres. Appl Surf Sci 2009;255: 4542–6.

[332]

Kang YQ, Cao MS, Yuan J, Zhang L, Wen B, Fang XY. Preparation and microwave absorption properties of basalt fiber/nickel core-shell heterostructures. J Alloy Comp 2010;495: 254–9.

[333]

Deng J, Li S, Zhou Y, Liang L, Zhao B, Zhang X, et al. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J Colloid Interface Sci 2018;509: 406–13.

[334]

Wan G, Luo Y, Wu L, Wang G. The fabrication and high-efficiency electromagnetic wave absorption performance of CoFe/C core–shell structured nanocomposites. Nanoscale Res Lett 2018;13: 68.

[335]

Zhang Y, Wang P, Wang Y, Qiao L, Wang T, Li F. Synthesis and excellent electromagnetic wave absorption properties of parallel aligned FeCo@C coreshell nanoflake composites. J Mater Chem C 2015;3: 10813–8.

[336]

Liu XG, Li B, Geng DY, Cui WB, Yang F, Xie ZG, et al. Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 2009;47: 470–4.

[337]

Almasi-Kashi M, Mokarian MH, Alikhanzadeh-Arani S. Improvement of the microwave absorption properties in FeNi/PANI nanocomposites fabricated with different structures. J Alloy Comp 2018;742: 413–20.

[338]

Wang L, Quan Q, Zhang L, Cheng L, Lin P, Pan S, et al. Microwave absorption of NdFe magnetic powders tuned with impedance matching. J Magn Magn Mater 2018;449: 385–9.

[339]

Chun H, Dybtsev DN, Kim H, Kim K. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. Chem Eur J 2005;11: 3521–9.

[340]

Tao F, Green M, Tran A, Zhang Y, Yin Y, Chen X. Plasmonic Cu9S5 nanonets for microwave absorption. ACS App Nano Mater 2019;2: 3836–47.

Journal of Materiomics
Pages 503-541
Cite this article:
Green M, Chen X. Recent progress of nanomaterials for microwave absorption. Journal of Materiomics, 2019, 5(4): 503-541. https://doi.org/10.1016/j.jmat.2019.07.003

195

Views

339

Crossref

N/A

Web of Science

422

Scopus

Altmetrics

Received: 05 May 2019
Revised: 15 June 2019
Accepted: 10 July 2019
Published: 13 July 2019
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return