AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies

Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70126, Bari, Italy

1 Present address: Department of Chemistry, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia.

Show Author Information

Graphical Abstract

Abstract

The reliable, selective, and fast detection of the inorganic and organic gases in indoor and outdoor air and industrial processes is a huge challenge for environmental sustainability, healthier life, and disease control and diagnosis. Metal oxides have been frequently explored as highly sensitive receptor elements in the electronic gas sensors since the 1960s. Gallium oxide (Ga2O3), often recognized as one of the widest-bandgap semiconductors, has shown tremendous potential as the inorganic gas receptor because of its extraordinary chemical and thermal stability, and excellent electronic properties. This article presents a comprehensive reference on the electrical properties, historical developments, detection mechanisms, and gas sensing performance of Ga2O3 nanowires and composite nanostructures. In particular, the relationships between composition, nanostructure, and gas sensing properties of gallium-containing oxidic nanomaterials such as β-Ga2O3 nanowires, surface-modified Ga2O3, metal-doped Ga2O3 or Ga-doped metal oxides, and Ga2O3/metal oxide composite heterostructures are studied. The applications of Ga2O3 gas sensors are discussed with an emphasis on their practical limitations such as high-temperature operation, power consumption, and miniaturization issues. Finally, future research directions and potential developments are suggested.

References

[1]
Waitz T, Wagner T, Kohl C-D, Tiemann M. New mesoporous metal oxides as gas sensors. In: Gédéon A, Massiani P, Babonneau F, editors. Stud. Surf. Sci. Catal. vol. 174. Elsevier; 2008. p. 401–4. https://doi.org/10.1016/S0167-2991(08)80227-3.
[2]

Wang C, Yin L, Zhang L, Xiang D, Gao R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors 2010;10:2088–106. https://doi.org/10.3390/s100302088.

[3]

Fine GF, Cavanagh LM, Afonja A, Binions R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010;10:5469–502. https://doi.org/10.3390/s100605469.

[4]

Afzal A, Cioffi N, Sabbatini L, Torsi L. NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens Actuators B Chem 2012;171–172:25–42. https://doi.org/10.1016/j.snb.2012.05.026.

[5]

Kohl C-D, Wagner T, editors. Gas sensing Fundamentals. Berlin Heidelberg: Springer-Verlag; 2014.

[6]

Mirzaei A, Neri G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens Actuators B Chem 2016;237:749–75. https://doi.org/10.1016/j.snb.2016.06.114.

[7]

Mirzaei A, Leonardi SG, Neri G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int 2016;42:15119–41. https://doi.org/10.1016/j.ceramint.2016.06.145.

[8]

Moseley PT. Progress in the development of semiconducting metal oxide gas sensors: a review. Meas Sci Technol 2017:28. https://doi.org/10.1088/1361-6501/aa7443.082001.

[9]

Korotcenkov G, Cho BK. Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens Actuators B Chem 2017;244:182–210. https://doi.org/10.1016/j.snb.2016.12.117.

[10]

Zhang J, Qin Z, Zeng D, Xie C. Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys Chem Chem Phys 2017;19:6313–29. https://doi.org/10.1039/C6CP07799D.

[11]

Gao X, Zhang T. An overview: facet-dependent metal oxide semiconductor gas sensors. Sens Actuators B Chem 2018;277:604–33. https://doi.org/10.1016/j.snb.2018.08.129.

[12]

Llobet E, Navarrete E, Annanouch FE, Alvarado M, González E, Ramírez JL, et al. Single-crystalline metal oxide, resistive gas sensors advances and perspectives. 2018 IEEE Sens. 2018;2018:1–4. https://doi.org/10.1109/ICSENS.8589734.

[13]

Dey A. Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 2018;229:206–17. https://doi.org/10.1016/j.mseb.2017.12.036.

[14]
Oprea A, Degler D, Barsan N, Hemeryck A, Rebholz J. 3-Basics of semiconducting metal oxideebased gas sensors. In: Barsan N, Schierbaum K, editors. Gas sens. Based conduct. Met. Oxides. Elsevier; 2019. p. 61–165. https://doi.org/10.1016/B978-0-12-811224-3.00003-2.
[15]

Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for highprecision gas sensors operated at room temperature. Mater Horiz 2019;6:470–506. https://doi.org/10.1039/C8MH01365A.

[16]

Togashi R, Nomura K, Eguchi C, Fukizawa T, Goto K, Thieu QT, et al. Thermal stability of β-Ga2O3 in mixed flows of H2 and N2. Jpn J Appl Phys 2015:54. https://doi.org/10.7567/JJAP.54.041102. 041102.

[17]

Rafique S, Han L, Zhao H. (Invited) ultrawide bandgap β-Ga2O3 thin films: growths, properties and devices. ECS Trans 2017;80:203–16. https://doi.org/10.1149/08007.0203ecst.

[18]

Fleischer M, Meixner H. Characterization and crystallite growth of semiconducting high-temperature-stable Ga2O3 thin films. J Mater Sci Lett 1992;11:1728–31. https://doi.org/10.1007/BF00736223.

[19]

Tippins HH. Optical Absorption and Photoconductivity in the Band Edge of $\ensuremath{\beta}\ensuremath{-}{\mathrm{Ga}}_{2}{\mathrm{O}}_{3}$. Phys Rev 1965;140:A316–9. https://doi.org/10.1103/PhysRev.140.A316.

[20]

Yan S, Wan L, Li Z, Zhou Y, Zou Z. Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO. Chem Commun 2010;46:6388–90. https://doi.org/10.1039/C0CC01579B.

[21]

Kumar S, Singh R. Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nanodevices. Phys Status Solidi RRL – Rapid Res Lett 2013;7:781–92. https://doi.org/10.1002/pssr.201307253.

[22]
Nikolaev VI, Stepanov SI, Romanov AE, Bougrov VE. Gallium oxide. Single cryst. Electron. Mater. Elsevier; 2019. p. 487–521. https://doi.org/10.1016/B978-0-08-102096-8.00014-8.
[23]

Kumar S, Tessarek C, Sarau G, Christiansen S, Singh R. Self-catalytic growth of β-Ga2O3 nanostructures by chemical vapor deposition. Adv Eng Mater 2015;17:709–15. https://doi.org/10.1002/adem.201400289.

[24]

Rafique S, Han L, Zorman CA, Zhao H. Synthesis of wide bandgap β-Ga2O3 rods on 3C-SiC-on-Si. Cryst Growth Des 2016;16:511–7. https://doi.org/10.1021/acs.cgd.5b01562.

[25]

Stepanov SI, Nikolaev VI, Bougrov VE, Romanov AE. Gallium oxide: properties and applications. A Review. Rev Adv Mater Sci 2016;44:63–86.

[26]

Kohn JA, Katz G, Broder JD. Characterization of β-Ga2O3 and its alumina isomorph, θ-Al2O3. Am Mineral 1957;42:398–407.

[27]

Åhman J, Svensson G, Albertsson J. A reinvestigation of β-gallium oxide. Acta Crystallogr C 1996;52:1336–8. https://doi.org/10.1107/S0108270195016404.

[28]

He H, Blanco MA, Pandey R. Electronic and thermodynamic properties of β-Ga2O3. Appl Phys Lett 2006;88:261904. https://doi.org/10.1063/1.2218046.

[29]

Pearton SJ, Yang J, Cary PH, Ren F, Kim J, Tadjer MJ, et al. A review of Ga2O3 materials, processing. devices. Appl Phys Rev 2018:5. https://doi.org/10.1063/1.5006941.011301.

[30]

Korhonen E, Tuomisto F, Gogova D, Wagner G, Baldini M, Galazka Z, et al. Electrical compensation by Ga vacancies in Ga2O3 thin films. Appl Phys Lett 2015;106:242103. https://doi.org/10.1063/1.4922814.

[31]

Cojocaru LN, Alecu ID. Electrical properties of ß-ga2O3. Z Phys Chem 1973;84:325–31. https://doi.org/10.1524/zpch.1973.84.5_6.325.

[32]

Cojocaru LN, Prodan A. Electrical conductivity and thermogravimetric studies of β - Ga2O3. Rev Roum Phys 1974;19:209–14.

[33]

Harwig T, Wubs GJ, Dirksen GJ. Electrical properties of β-Ga2O3 single crystals. Solid State Commun 1976;18:1223–5. https://doi.org/10.1016/0038-1098(76)90944-3.

[34]

Harwig T, Schoonman J. Electrical properties of β-Ga2O3 single crystals. Ⅱ. J Solid State Chem 1978;23:205–11. https://doi.org/10.1016/0022-4596(78)90066-X.

[35]

Ueda N, Hosono H, Waseda R, Kawazoe H. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl Phys Lett 1997;70:3561–3. https://doi.org/10.1063/1.119233.

[36]

Hajnal Z, Miró J, Kiss G, Réti F, Deák P, Herndon RC, et al. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3. J Appl Phys 1999;86:3792–6. https://doi.org/10.1063/1.371289.

[37]

Orita M, Ohta H, Hirano M, Hosono H. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett 2000;77:4166–8. https://doi.org/10.1063/1.1330559.

[38]

Víllora EG, Atou T, Sekiguchi T, Sugawara T, Kikuchi M, Fukuda T. Cathodoluminescence of undoped β-Ga2O3 single crystals. Solid State Commun 2001;120:455–8.

[39]

Víllora EG, Morioka Y, Atou T, Sugawara T, Kikuchi M, Fukuda T. Infrared reflectance and electrical conductivity of β-Ga2O3. Phys Status Solidi A 2002;193:187–95.

[40]

Hosono H, Ohta H, Orita M, Ueda K, Hirano M. Frontier of transparent conductive oxide thin films. Vacuum 2002;66:419–25.

[41]

Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth 2014;404:184–91. https://doi.org/10.1016/j.jcrysgro.2014.07.021.

[42]

Varley JB, Weber JR, Janotti A, Van de Walle CG. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett 2010;97:142106. https://doi.org/10.1063/1.3499306.

[43]

Zacherle T, Schmidt PC, Martin M. Ab initio calculations on the defect structure of β-Ga2O3. Phys Rev B 2013;87:235206. https://doi.org/10.1103/PhysRevB.87.235206.

[44]

King PDC, McKenzie I, Veal TD. Observation of shallow-donor muonium in Ga2O3:evidence for hydrogen-induced conductivity. Appl Phys Lett 2010:96. https://doi.org/10.1063/1.3309694.062110.

[45]

King PDC, Veal TD. Conductivity in transparent oxide semiconductors. J Phys Condens Matter 2011;23:334214. https://doi.org/10.1088/0953-8984/23/33/334214.

[46]

Mastro MA, Kuramata A, Calkins J, Kim J, Ren F, Pearton SJ. Perspective–dopportunities and future directions for Ga2O3. ECS J Solid State Sci Technol 2017;6. https://doi.org/10.1149/2.0031707jss.P356-9.

[47]

Chang L-W, Li C-F, Hsieh Y-T, Liu C-M, Cheng Y-T, Yeh J-W, et al. Ultrahighdensity β-Ga2O3/N-doped β-Ga2O3 Schottky and p-n nanowire junctions: synthesis and electrical transport properties. J Electrochem Soc 2011;158:D136–42. https://doi.org/10.1149/1.3530787.

[48]

Wang XH, Zhang FB, Saito K, Tanaka T, Nishio M, Guo QX. Electrical properties and emission mechanisms of Zn-doped β-Ga2O3 films. J Phys Chem Solids 2014;75:1201–4. https://doi.org/10.1016/j.jpcs.2014.06.005.

[49]

Akaiwa K, Kaneko K, Ichino K, Fujita S. Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates. Jpn J Appl Phys 2016;55:1202BA. https://doi.org/10.7567/JJAP.55.1202BA.

[50]

Chikoidze E, von Bardeleben HJ, Akaiwa K, Shigematsu E, Kaneko K, Fujita S, et al. Electrical, optical, and magnetic properties of Sn doped α-Ga2O3 thin films. J Appl Phys 2016:120. https://doi.org/10.1063/1.4958860. 025109.

[51]

Li Y, Yang C, Wu L, Zhang R. Electrical and optical properties of Si-doped Ga2O3. Mod Phys Lett B 2017;31:1750172. https://doi.org/10.1142/S021798491750172X.

[52]

Goto K, Konishi K, Murakami H, Kumagai Y, Monemar B, Higashiwaki M, et al. Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties. Thin Solid Films 2018;666:182–4. https://doi.org/10.1016/j.tsf.2018.09.006.

[53]

Víllora EG, Shimamura K, Yoshikawa Y, Ujiie T, Aoki K. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl Phys Lett 2008;92:202120. https://doi.org/10.1063/1.2919728.

[54]

Frank J, Fleischer M, Meixner H. Gas-sensitive electrical properties of pure and doped semiconducting Ga2O3 thick films. Sens Actuators B Chem 1998;48:318–21. https://doi.org/10.1016/S0925-4005(98)00064-1.

[55]

Fleischer M, Meixner H. Gallium oxide thin films: a new material for hightemperature oxygen sensors. Sens Actuators B Chem 1991;4:437–41. https://doi.org/10.1016/0925-4005(91)80148-D.

[56]

Fleischer M, Meixner H. Oxygen sensing with long-term stable Ga2O3 thin films. Sens Actuators B Chem 1991;5:115–9. https://doi.org/10.1016/0925-4005(91)80230-H.

[57]

Macri PP, Enzo S, Sberveglieri G, Groppelli S, Perego C. Unknown Ga2O3 structural phase and related characteristics as active layers for O2 sensors. Appl Surf Sci 1993;65:277–82.

[58]

Lampe U, Fleischer M, Meixner H. Lambda measurement with Ga2O3. Sens Actuators B Chem 1994;17:187–96. https://doi.org/10.1016/0925-4005(93)00880-8.

[59]

Ogita M, Saika N, Nakanishi Y, Hatanaka Y. Ga2O3 thin films for hightemperature gas sensors. Appl Surf Sci 1999;142:188–91.

[60]

Schwebel T, Fleischer M, Meixner H. Selective, temperature compensated O2 sensor based on Ga2O3 thin films. Sens Actuators B Chem 2000;65:176–80. https://doi.org/10.1016/S0925-4005(99)00326-3.

[61]

Ogita M, Higo K, Nakanishi Y, Hatanaka Y. Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci 2001;175–176:721–5. https://doi.org/10.1016/S0169-4332(01)00080-0.

[62]

Ogita M, Yuasa S, Kobayashi K, Yamada Y, Nakanishi Y, Hatanaka Y. Presumption and improvement for gallium oxide thin film of high temperature oxygen sensors. Appl Surf Sci 2003;212:397–401.

[63]

Fleischer M, Höllbauer L, Meixner H. Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases. Sens Actuators B Chem 1994;18:119–24. https://doi.org/10.1016/0925-4005(94)87069-1.

[64]

Fleischer M, Wagner V, Hacker G, Meixner H. Comparision of a. c. and d. c. measurement techniques using semiconducting Ga2O3 sensors. Sens Actuators B Chem 1995;26:85–8. https://doi.org/10.1016/0925-4005(94)01562-V.

[65]

Réti F, Fleischer M, Perczel IV, Meixner H, Giber J. Detection of reducing gases in air by β-Ga2O3 thin films using self-heated and externally (oven-) heated operation modes. Sens Actuators B Chem 1996;34:378–82. https://doi.org/10.1016/S0925-4005(97)80012-3.

[66]

Fleischer M, Meixner H. Improvements in Ga2O3 sensors for reducing gases. Sens Actuators B Chem 1993;13:259–63. https://doi.org/10.1016/0925-4005(93)85376-L.

[67]

Fleischer M, Höllbauer L, Born E, Meixner H. Evidence for a phase transition of β-gallium oxide at very low oxygen pressures. J Am Ceram Soc 1997;80:2121–5.

[68]

Hoefer U, Frank J, Fleischer M. High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison. Sens Actuators B Chem 2001;78:6–11. https://doi.org/10.1016/S0925-4005(01)00784-5.

[69]

Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catal Surv Asia 2003;7:63–75. https://doi.org/10.1023/A:1023436725457.

[70]

Jiménez-Cadena G, Riu J, Rius FX. Gas sensors based on nanostructured materials. Analyst 2007;132:1083–99. https://doi.org/10.1039/B704562J.

[71]

Lin H-J, Baltrus JP, Gao H, Ding Y, Nam C-Y, Ohodnicki P, et al. Perovskite nanoparticle-sensitized Ga2O3 nanorod arrays for CO detection at high temperature. ACS Appl Mater Interfaces 2016;8:8880–7. https://doi.org/10.1021/acsami.6b01709.

[72]

Kiss G, Krafcsik OH, Kovács K, Josepovits VK, Fleischer M, Meixner H, et al. Impedance spectroscopic and secondary ion mass spectrometric studies of bGa2O3/O2 interaction. Thin Solid Films 2001;391:239–42. https://doi.org/10.1016/S0040-6090(01)00988-9.

[73]

Horrillo MC, Gutiérrez J, Arés L, Robla JI, Sayago I, Getino J, et al. Hall effect measurements to calculate the conduction control in semiconductor films of SnO2. Sens Actuators A Phys 1994;42:619–21. https://doi.org/10.1016/0924-4247(94)80065-0.

[74]

Moseley PT. Materials selection for semiconductor gas sensors. Sens Actuators B Chem 1992;6:149–56. https://doi.org/10.1016/0925-4005(92)80047-2.

[75]
Rickerby DG, Serventi AM. CHAPTER 6-nanostructured metal oxide gas sensors for air-quality monitoring. In: Fan M, Huang C-P, Bland AE, Wang Z, Slimane R, Wright I, editors. Environanotechnology. Amsterdam: Elsevier; 2010. p. 99–136. https://doi.org/10.1016/B978-0-08-054820-3.00006-X.
[76]

Fleischer M, Meixner H. Electron mobility in single- and polycrystalline Ga2O 3. J Appl Phys 1993;74:300–5. https://doi.org/10.1063/1.354107.

[77]

Fleischer M, Meixner H. Thin-film gas sensors based on high-temperatureoperated metal oxides. J Vac Sci Technol A 1999;17:1866–72. https://doi.org/10.1116/1.581906.

[78]

Othonos KM, Zervos M, Christofides C, Othonos A. Ultrafast spectroscopy and red emission from β-Ga2O3/β-Ga2S3 nanowires. Nanoscale res lett 2015:10. https://doi.org/10.1186/s11671-015-1016-y.

[79]

Eastman DE. Photoelectric work functions of transition, rare-earth, and noble metals. Phys Rev B 1970;2:1–2. https://doi.org/10.1103/PhysRevB.2.1.

[80]

Michaelson HB. The work function of the elements and its periodicity. J Appl Phys 1977;48:4729–33. https://doi.org/10.1063/1.323539.

[81]

Trinchi A, Galatsis K, Wlodarski W, Li YX. A Pt/Ga2O3-ZnO/SiC Schottky diode-based hydrocarbon gas sensor. IEEE Sens J 2003;3:548–553. doi:10.1109/JSEN.2003.817670.

[82]

Trinchi A, Wlodarski W, Li YX. Hydrogen sensitive GA2O3 Schottky diode sensor based on SiC. Sens Actuators B Chem 2004;100:94–8. https://doi.org/10.1016/j.snb.2003.12.028.

[83]

Trinchi A, Wlodarski W, Li YX, Faglia G, Sberveglieri G. Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response. J Phys Appl Phys 2005;38:754–63. https://doi.org/10.1088/0022-3727/38/5/014.

[84]

Fleischer M, Meixner H. Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films. Sens Actuators B Chem 1992;6:257–61. https://doi.org/10.1016/0925-4005(92)80065-6.

[85]

Fleischer M, Meixner H. Selectivity in high-temperature operated semiconductor gas-sensors. Sens Actuators B Chem 1998;52:179–87. https://doi.org/10.1016/S0925-4005(98)00271-8.

[86]

Kohl D, Ochs T, Geyer W, Fleischer M, Meixner H. Adsorption and decomposition of methane on gallium oxide films. Sens Actuators B Chem 1999;59:140–5. https://doi.org/10.1016/S0925-4005(99)00211-7.

[87]

Frank J, Meixner H. Sensor system for indoor air monitoring using semiconducting metal oxides and IR-absorption. Sens Actuators B Chem 2001;78:298–302. https://doi.org/10.1016/S0925-4005(01)00829-2.

[88]

Baban C, Toyoda Y, Ogita M. Oxygen sensing at high temperatures using Ga2O3 films. Thin Solid Films 2005;484:369–73. https://doi.org/10.1016/j.tsf.2005.03.001.

[89]

Bartic M, Baban C-I, Suzuki H, Ogita M, Isai M. β-Gallium oxide as oxygen gas sensors at a high temperature. J Am Ceram Soc 2007;90:2879–84. https://doi.org/10.1111/j.1551-2916.2007.01842.x.

[90]

Tomm Y, Reiche P, Klimm D, Fukuda T. Czochralski grown Ga2O3 crystals. J Cryst Growth 2000;220:510–4. https://doi.org/10.1016/S0022-0248(00)00851-4.

[91]

Bartic M. Mechanism of oxygen sensing on β-Ga2O3 single-crystal sensors for high temperatures. Phys Status Solidi Appl Mater Sci 2016;213:457–62. https://doi.org/10.1002/pssa.201532599.

[92]

Liu Z, Yamazaki T, Shen Y, Kikuta T, Nakatani N, Li Y. O2 and CO sensing of Ga2O3 multiple nanowire gas sensors. Sens Actuators B Chem 2008;129:666–70. https://doi.org/10.1016/j.snb.2007.09.055.

[93]

Yan J-T, Lee C-T. Improved detection sensitivity of Pt/β-Ga2O3/GaN hydrogen sensor diode. Sens Actuators B Chem 2009;143:192–7.

[94]

Lee C-T, Yan J-T. Sensing mechanisms of Pt/β-Ga2O3/GaN hydrogen sensor diodes. Sens Actuators B Chem 2010;147:723–9.

[95]

Nakagomi S, Sai T, Kokubun Y. Hydrogen gas sensor with self temperature compensation based on β-Ga2O3 thin film. Sens Actuators B Chem 2013;187:413–9. https://doi.org/10.1016/j.snb.2013.01.020.

[96]

Cuong ND, Park YW, Yoon SG. Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor-liquid-solid technique. Sens Actuators B Chem 2009;140:240–4. https://doi.org/10.1016/j.snb.2009.04.020.

[97]

Pandeeswari R, Jeyaprakash BG. High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature. Sens Actuators B Chem 2014;195:206–14.

[98]

Mani GK, Rayappan JBB. A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens Actuators B Chem 2013;183:459–66. https://doi.org/10.1016/j.snb.2013.03.132.

[99]

Juan YM, Chang SJ, Hsueh HT, Wang SH, Weng WY, Cheng TC, et al. Effects of humidity and ultraviolet characteristics on β-Ga 2 O 3 nanowire sensor. RSC Adv 2015;5:84776–81.

[100]

Juan YM, Chang SJ, Hsueh HT, Chen TC, Huang SW, Lee YH, et al. Self-powered hybrid humidity sensor and dual-band UV photodetector fabricated on back-contact photovoltaic cell. Sens Actuators B Chem 2015;219:43–9.

[101]

Chen Z, Lu C. Humidity sensors: a review of materials and mechanisms. Sens Lett 2005;3:274–95.

[102]

Farahani H, Wagiran R, Hamidon M. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 2014;14:7881–939.

[103]

Blank TA, Eksperiandova LP, Belikov KN. Recent trends of ceramic humidity sensors development: a review. Sens Actuators B Chem 2016;228:416–42.

[104]

Yang D-J, Kamienchick I, Youn DY, Rothschild A, Il-Doo K. Ultrasensitive highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv Funct Mater 2010;20:4258–64. https://doi.org/10.1002/adfm.201001251.

[105]

Xue X, Chen Z, Ma C, Xing L, Chen Y, Wang Y, et al. One-step synthesis and gas-sensing characteristics of uniformly loaded Pt@SnO2 nanorods. J Phys Chem C 2010;114:3968–72. https://doi.org/10.1021/jp908343r.

[106]

Guo S, Wang E. Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011;6:240–64. https://doi.org/10.1016/j.nantod.2011.04.007.

[107]

Shin J, Choi S-J, Lee I, Youn D-Y, Park CO, Lee J-H, et al. Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 2013;23:2357–67. https://doi.org/10.1002/adfm.201202729.

[108]

Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K. Effect of water vapor on Pdloaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interfaces 2015;7:5863–9. https://doi.org/10.1021/am509082w.

[109]

Luo Y, Zhang C, Zheng B, Geng X, Debliquy M. Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int J Hydrogen Energy 2017;42:20386–97. https://doi.org/10.1016/j.ijhydene.2017.06.066.

[110]

Hacker B, Fleischer M, Meixner H. Topography and performance of gassensing devices: an AFM study. Scanning 1993;15:291–4. https://doi.org/10.1002/sca.4950150508.

[111]

Stegmeier S, Fleischer M, Hauptmann P. Influence of the morphology of platinum combined with β-Ga 2O3 on the VOC response of work function type sensors. Sens Actuators B Chem 2010;148:439–49. https://doi.org/10.1016/j.snb.2010.05.030.

[112]

Stegmeier S, Fleischer M, Hauptmann P. Thermally activated platinum as VOC sensing material for work function type gas sensors. Sens Actuators B Chem 2010;144:418–24. https://doi.org/10.1016/j.snb.2009.02.021.

[113]

Kim H, Jin C, An S, Lee C. Fabrication and CO gas-sensing properties of Pt-functionalized Ga2O3 nanowires. Ceram Int 2012;38:3563–7. https://doi.org/10.1016/j.ceramint.2011.12.072.

[114]

Bartic M, Toyoda Y, Baban C-I, Ogita M. Oxygen sensitivity in gallium oxide thin films and single crystals at high temperatures. Jpn J Appl Phys 2006;45:5186. https://doi.org/10.1143/JJAP.45.5186.

[115]

Baban C-I, Toyoda Y, Ogita M. High temperature oxygen sensor using a PtGa2O3-Pt sandwich structure. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 2004;43:7213–6. https://doi.org/10.1143/JJAP.43.7213.

[116]

Tsang SC, Bulpitt CDA, Mitchell PCH, Ramirez-Cuesta AJ. Some new insights into the sensing mechanism of palladium promoted tin (IV) oxide sensor. J Phys Chem B 2001;105:5737–42. https://doi.org/10.1021/jp010175a.

[117]

Uner D, Tapan NA. Özen İ, Üner M. Oxygen adsorption on Pt/TiO2 catalysts. Appl Catal Gen 2003;251:225–34. https://doi.org/10.1016/S0926-860X(03)00317-X.

[118]

Hotovy I, Huran J, Siciliano P, Capone S, Spiess L, Rehacek V. Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification. Sens Actuators B Chem 2004;103:300–11. https://doi.org/10.1016/j.snb.2004.04.109.

[119]

Haridas D, Sreenivas K, Gupta V. Improved response characteristics of SnO2 thin film loaded with nanoscale catalysts for LPG detection. Sens Actuators B Chem 2008;133:270–5. https://doi.org/10.1016/j.snb.2008.02.030.

[120]

Kocemba I, Rynkowski J. The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sens Actuators B Chem 2011;155:659–66. https://doi.org/10.1016/j.snb.2011.01.026.

[121]

Haridas D, Gupta V. Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection. Sens Actuators B Chem 2012;166–167:156–64. https://doi.org/10.1016/j.snb.2012.02.026.

[122]

Yin X-T, Guo X-M. Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection. Sens Actuators B Chem 2014;200:213–8. https://doi.org/10.1016/j.snb.2014.04.026.

[123]

Fleischer M, Seth M, Kohl C-D, Meixner H. A study of surface modification at semiconducting Ga2O3 thin film sensors for enhancement of the sensitivity and selectivity. Sens Actuators B Chem 1996;36:290–6. https://doi.org/10.1016/S0925-4005(97)80084-6.

[124]

Fleischer M, Seth M, Kohl C-D, Meixner H. A selective H2 sensor implemented using Ga2O3 thin-films which are covered with a gas-filtering SiO2 layer. Sens Actuators B Chem 1996;36:297–302. https://doi.org/10.1016/S0925-4005(97)80085-8.

[125]

Lang AC, Fleischer M, Meixner H. Surface modifications of Ga2O3 thin film sensors with Rh, Ru and Ir clusters. Sens Actuators B Chem 2000;66:80–4. https://doi.org/10.1016/S0925-4005(99)00347-0.

[126]

Weh T, Frank J, Fleischer M, Meixner H. On the mechanism of hydrogen sensing with SiO2 modificated high temperature Ga2O3 sensors. Sens Actuators B Chem 2001;78:202–7. https://doi.org/10.1016/S0925-4005(01)00813-9.

[127]

Barsan N, Weimar U. Conduction model of metal oxide gas sensors. J Electroceram 2001;7:143–67. https://doi.org/10.1023/A:1014405811371.

[128]

Das S, Jayaraman V. SnO2:a comprehensive review on structures and gas sensors. Prog Mater Sci 2014;66:112–255.

[129]

Mazeina L, Picard YN, Maximenko SI, Perkins FK, Glaser ER, Twigg ME, et al. Growth of Sn-doped β-Ga2O3 nanowires and Ga 2O3-SnO2 heterostructures for gas sensing applications. Cryst Growth Des 2009;9:4471–9. https://doi.org/10.1021/cg900499c.

[130]

Frank J, Fleischer M, Meixner H, Feltz A. Enhancement of sensitivity and conductivity of semiconducting Ga2O3 gas sensors by doping with SnO2. Sens Actuators B Chem 1998;49:110–4. https://doi.org/10.1016/S0925-4005(98)00094-X.

[131]

Frank J, Fleischer M, Meixner H. Electrical doping of gas-sensitive, semiconducting Ga2O3 thin films. Sens Actuators B Chem 1996;34:373–7. https://doi.org/10.1016/S0925-4005(96)01829-1.

[132]

Li Y, Trinchi A, Wlodarski W, Galatsis K, Kalantar-zadeh K. Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants. Sens Actuators B Chem 2003;93:431–4.

[133]

Wu N, Chen Z, Xu J, Chyu M, Mao SX. Impedance-metric Pt/YSZ/Au-Ga2O3 sensor for CO detection at high temperature. Sens Actuators B Chem 2005;110:49–53. https://doi.org/10.1016/j.snb.2005.01.012.

[134]

Wang D, Lou Y, Wang R, Wang P, Zheng X, Zhang Y, et al. Humidity sensor based on Ga2O3 nanorods doped with Na+ and K+ from GaN powder. Ceram Int 2015;41:14790–7.

[135]

Reddy KR, Reddy TBS, Forbes I, Miles RW. Highly oriented and conducting ZnO: Ga layers grown by chemical spray pyrolysis. Surf Coat Technol 2002;151:110–3.

[136]

Kim JH, Ahn BD, Lee CH, Jeon KA, Kang HS, Lee SY. Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. J Appl Phys 2006;100:113515.

[137]

Snure M, Tiwari A. Structural, electrical, and optical characterizations of epitaxial Zn 1- x Ga x O films grown on sapphire (0001) substrate. J Appl Phys 2007;101:124912.

[138]

Le T, Dang HP, Duong AQ, Luc QH. Effect of Sn-substituted Ga and in dopant content on the structural, electrical, and optical properties of p-type X-doped SnO2 (X= Ga and in) films: testing the photoelectronic effect of X-doped SnO2/n-Si junctions. J Photochem Photobiol A Chem 2019;376:88–99.

[139]

Tiburcio-Silver A, Sanchez-Juarez A. SnO2:Ga thin films as oxygen gas sensor. Mater Sci Eng B 2004;110:268–71.

[140]
Pearce R, Söderlind F, Hagelin A, Käll P-O, Yakimova R, Spetz AL, et al. Effect of Water vapour on Gallium doped Zinc Oxide nanoparticle sensor gas response. Sens. 2009 IEEE. IEEE; 2009. p. 2039–43.
[141]

Kevin M, Tho WH, Ho GW. Transferability of solution processed epitaxial Ga: ZnO films; tailored for gas sensor and transparent conducting oxide applications. J Mater Chem 2012;22:16442–7.

[142]

Vorobyeva N, Rumyantseva M, Filatova D, Konstantinova E, Grishina D, Abakumov A, et al. Nanocrystalline ZnO (Ga): paramagnetic centers, surface acidity and gas sensor properties. Sens Actuators B Chem 2013;182:555–64.

[143]

Hou Y, Jayatissa AH. Low resistive gallium doped nanocrystalline zinc oxide for gas sensor application via sol–gel process. Sens Actuators B Chem 2014;204:310–8.

[144]

Rashid T-R, Phan D-T, Chung G-S. Effect of Ga-modified layer on flexible hydrogen sensor using ZnO nanorods decorated by Pd catalysts. Sens Actuators B Chem 2014;193:869–76.

[145]

Girija KG, Somasundaram K, Debnath AK, Topkar A, Vatsa RK. Enhanced H2S sensing properties of Gallium doped ZnO nanocrystalline films as investigated by DC conductivity and impedance spectroscopy. Mater Chem Phys 2018;214:297–305.

[146]

Du L, Li H, Li S, Liu L, Li Y, Xu S, et al. A gas sensor based on Ga-doped SnO2 porous microflowers for detecting formaldehyde at low temperature. Chem Phys Lett 2018;713:235–41. https://doi.org/10.1016/j.cplett.2018.10.052.

[147]

Sun P, Zhou X, Wang C, Wang B, Xu X, Lu G. One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures. Sens Actuators B Chem 2014;190:32–9. https://doi.org/10.1016/j.snb.2013.08.045.

[148]

Moon WJ, Yu JH, Choi GM. Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sens Actuators B Chem 2001;80:21–7.

[149]

Moon WJ, Yu JH, Choi GM. The CO and H2 gas selectivity of CuO-doped SnO2–ZnO composite gas sensor. Sens Actuators B Chem 2002;87:464–70.

[150]

Mondal B, Basumatari B, Das J, Roychaudhury C, Saha H, Mukherjee N. ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing. Sens Actuators B Chem 2014;194:389–96.

[151]

Park S, Kim S, Kheel H, Lee C. Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor. Sens Actuators B Chem 2016;222:1193–200.

[152]

Espid E, Taghipour F. Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens Actuators B Chem 2017;241:828–39.

[153]

Mohammadi MR, Ghorbani M, Cordero-Cabrera MC, Fray DJ. Preparation and characterisation of nanostructural TiO2-Ga 2O3 binary oxides with high surface area derived form particulate sol-gel route. J Mater Sci 2007;42:4976–86. https://doi.org/10.1007/s10853-006-0380-5.

[154]

Mohammadi MR, Fray DJ, Ghorbani M. Comparison of single and binary oxide sol-gel gas sensors based on titania. Solid State Sci 2008;10:884–93. https://doi.org/10.1016/j.solidstatesciences.2007.10.035.

[155]

Liu K, Sakurai M, Aono M. One-step fabrication of β-Ga 2 O 3–amorphous-SnO 2 core–shell microribbons and their thermally switchable humidity sensing properties. J Mater Chem 2012;22:12882–7.

[156]

Bagheri M, Khodadadi AA, Mahjoub AR, Mortazavi Y. Highly sensitive galliaSnO2 nanocomposite sensors to CO and ethanol in presence of methane. Sens Actuators B Chem 2013;188:45–52. https://doi.org/10.1016/j.snb.2013.06.069.

[157]

Bagheri M, Khodadadi AA, Mahjoub AR, Mortazavi Y. Gallia-ZnO nanohybrid sensors with dramatically higher sensitivity to ethanol in presence of CO, methane and VOCs. Sens Actuators B Chem 2016;223:576–85. https://doi.org/10.1016/j.snb.2015.09.137.

[158]

Shafiei M, Hoshyargar F, Motta N, O'Mullane AP. Utilizing p-type native oxide on liquid metal microdroplets for low temperature gas sensing. Mater Des 2017;122:288–95. https://doi.org/10.1016/j.matdes.2017.03.017.

[159]

Demin IE, Kozlov AG. Selectivity of the gas sensor based on the 50% In2O3–50%Ga2O3 thin film in dynamic mode of operation. J Phys Conf Ser 2018:944. https://doi.org/10.1088/1742-6596/944/1/012027. 012027.

[160]

Trinchi A, Li YX, Wlodarski W, Kaciulis S, Pandolfi L, Russo SP, et al. Investigation of sol–gel prepared Ga–Zn oxide thin films for oxygen gas sensing. Sens Actuators A Phys 2003;108:263–70.

[161]

Jin C, Park S, Kim H, Lee C. Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors. Sens Actuators B Chem 2012;161:223–8.

[162]

Zhang B, Fu W, Meng X, Ruan A, Su P, Yang H. Synthesis and enhanced gas sensing properties of flower-like ZnO/α-Fe2O3 core-shell nanorods. Ceram Int 2017;43:5934–40. https://doi.org/10.1016/j.ceramint.2017.01.101.

[163]

Chen Y, Li H, Ma Q, Che Q, Wang J, Wang G, et al. ZIF-8 derived hexagonallike α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance. Appl Surf Sci 2018;439:649–59. https://doi.org/10.1016/j.apsusc.2018.01.084.

[164]

Mohammadi MR, Fray DJ. Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol-gel route. Acta Mater 2007;55:4455–66. https://doi.org/10.1016/j.actamat.2007.04.011.

[165]

Park S, Kim S, Sun G-J, Lee C. Synthesis, structure and ethanol sensing properties of Ga2O3-core/WO3-shell nanostructures. Thin Solid Films 2015;591:341–5.

[166]

Weis T, Lipperheide R, Wille U, Brehme S. Barrier-controlled carrier transport in microcrystalline semiconducting materials: description within a unified model. J Appl Phys 2002;92:1411–8. https://doi.org/10.1063/1.1488246.

[167]

Bagheri M, Khodadadi AA, Mahjoub AR, Mortazavi Y. Strong effects of gallia on structure and selective responses of Ga2O3–In2O3 nanocomposite sensors to either ethanol, CO or CH4. Sens Actuators B Chem 2015;220:590–9.

[168]

Hoefer U. Flue gas sensors for combustion control in small furnaces. Tech Mess 2005;72:646–53. https://doi.org/10.1524/teme.2005.72.11.646.

[169]

Pohle R, Fleischer M, Meixner H. In situ infrared emission spectroscopic study of the adsorption of H2O and hydrogen-containing gases on Ga2O3 gas sensors. Sens Actuators B Chem 2000;68:151–6. https://doi.org/10.1016/S0925-4005(00)00476-7.

[170]

Park SH, Kim SH, Park SY, Lee C. Synthesis and CO gas sensing properties of surface-nitridated Ga 2 O 3 nanowires. RSC Adv 2014;4:63402–7.

[171]

Fleischer M, Meixner H. A selective CH4 sensor using semiconducting Ga2O3 thin films based on temperature switching of multigas reactions. Sens Actuators B Chem 1995;25:544–7. https://doi.org/10.1016/0925-4005(95)85118-6.

[172]

Flingelli GK, Fleischer MM, Meixner H. Selective detection of methane in domestic environments using a catalyst sensor system based on Ga2O3. Sens Actuators B Chem 1998;48:258–62. https://doi.org/10.1016/S0925-4005(98)00054-9.

[173]

Schwebel T, Fleischer M, Meixner H, Kohl C-D. CO-Sensor for domestic use based on high temperature stable Ga2O3 thin films. Sens Actuators B Chem 1998;49:46–51. https://doi.org/10.1016/S0925-4005(97)00334-1.

[174]

Mazeina L, Perkins FK, Bermudez VM, Arnold SP, Prokes SM. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors. Langmuir 2010;26:13722–6. https://doi.org/10.1021/la101760k.

[175]

Mazeina L, Bermudez VM, Perkins FK, Arnold SP, Prokes SM. Interaction of functionalized Ga2O3 NW-based room temperature gas sensors with different hydrocarbons. Sens Actuators B Chem 2010;151:114–20. https://doi.org/10.1016/j.snb.2010.09.038.

[176]

Righettoni M, Amann A, Pratsinis SE. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater Today 2015;18:163–71. https://doi.org/10.1016/j.mattod.2014.08.017.

Journal of Materiomics
Pages 542-557
Cite this article:
Afzal A. β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies. Journal of Materiomics, 2019, 5(4): 542-557. https://doi.org/10.1016/j.jmat.2019.08.003

168

Views

82

Crossref

N/A

Web of Science

109

Scopus

Altmetrics

Received: 23 April 2019
Revised: 29 July 2019
Accepted: 08 August 2019
Published: 09 August 2019
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return