AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Graphene controlled phase evolution in Sr-deficient Sr(Ti, Nb)O3 thermoelectric ceramics

Jia LiaCao WubJilong HuangbJuanjuan Xinga( )Yuchi Fanb( )Qingqiao FuaYing JiangaHui Gua( )
Materials Genome Institute, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

• For monolithic Sr(Ti, Nb)O3, the precipitation of Ti3O5 is ascribed to Sr deficiency.

• RGO promotes the co-precipitation of Nb and Ti, which forms the Nb-enriched rutile TiO2.

• More addition of RGO gives rise to the formation of local Magnéli phase in the composites.

• Strontium and oxygen vacancies in the matrix can be tuned by the addition of RGO.

• Achieving ultrahigh Urec of 5.00J/cm3 and PD of 100.5 M ceramics.

Graphical Abstract

Abstract

Correlated phase and microstructural evolution are systematically investigated by electron microscopies in Sr-deficient Sr(Ti, Nb)O3 (STNO) thermoelectric ceramics incorporated with different fraction of reduced graphene oxide (RGO). It is found that while no impurity except for very few Ti3O5 precipitates are observed in monolithic STNO, the Nb-enriched rutile TiO2 appears in RGO/STNO composites. With increasing RGO content, the amount of precipitates increase at first and then decrease when RGO content becomes high, which can be ascribed to the formation of local Magnéli phase. In addition, the energy-dispersive X-ray spectra combined with cathodoluminescence characterization indicates that the variation of Sr deficiency experiences the opposite trend with respect to the precipitates content. These findings clearly reveal the unique reducing effect of RGO on the microstructure of doped SrTiO3 with Sr deficiency, which can greatly facilitate the design of perovskite based thermoelectric materials of hierarchical structure.

References

[1]

Chung SY, Yoon DY, Kang SJL. Effects of donor concentration and oxygen partial pressure on interface morphology and grain growth behavior in SrTiO3. Acta Mater 2002;50:3361-71. https://doi.org/10.1016/S1359-6454(02)00139-8.

[2]

Moos R, Hardtl KH. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400℃. J Am Ceram Soc 2005;80:2549-62. https://doi.org/10.1111/j.1151-2916.1997.tb03157.x.

[3]

Wu C, Li J, Fan Y, Xing J, Gu H, Zhou Z, et al. The effect of reduced graphene oxide on microstructure and thermoelectric properties of Nb-doped A-site-deficient SrTiO3 ceramics. J Alloys Compd 2019;786:884-93. https://doi.org/10.1016/j.jallcom.2019.01.376.

[4]

Wang H, Su W, Liu J, Wang C. Recent development of n-type perovskite thermoelectrics. J Mater 2016;2:225-36. https://doi.org/10.1016/j.jmat.2016.06.005.

[5]

Chen C, Zhang T, Donelson R, Tan TT, Li S. Effects of yttrium substitution and oxygen deficiency on the crystal phase, microstructure, and thermoelectric properties of Sr1-1.5xYxTiO3-δ (0 ≤ x ≤ 0.15). J Alloys Compd 2015;629:49-54. https://doi.org/10.1016/j.jallcom.2014.12.125.

[6]

Chen J, Chen H, Hao F, Ke X, Chen N, Yajima T, et al. Ultrahigh thermoelectric performance in SrNb0.2Ti0.8O3 oxide films at a submicrometer-scale thickness. ACS Energy Lett 2017;2:915-21. https://doi.org/10.1021/acsenergylett.7b00197.

[7]

Teranishi T, Ishikawa Y, Hayashi H, Kishimoto A, Katayama M, Inada Y. Thermoelectric efficiency of reduced SrTiO3 ceramics modified with la and Nb. J Am Ceram Soc 2013;96:2852-6. https://doi.org/10.1111/jace.12379.

[8]

Muta H, Kurosaki K, Yamanaka S. Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3. J Alloys Compd 2005;392:306-9. https://doi.org/10.1016/j.jallcom.2004.09.005.

[9]

Chen C, Bousnina M, Giovannelli F, Delorme F. Influence of Bi on the thermoelectric properties of SrTiO3-δ. J Mater 2019;5:88-93. https://doi.org/10.1016/j.jmat.2018.12.004.

[10]

Wang J, Zhang BY, Kang HJ, Li Y, Yaer X, Li JF, et al. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy 2017;35:387-95. https://doi.org/10.1016/j.nanoen.2017.04.003.

[11]

Tinh NT, Tsuji T. Thermoelectric properties of heavily doped polycrystalline SrTiO3. Springer Proc Phys 2009;127:209-17. https://doi.org/10.1007/978-3-540-88201-5_24.

[12]

Tian T, Cheng L, Zheng L, Xing J, Gu H, Bernik S, et al. Defect engineering for a markedly increased electrical conductivity and power factor in doped ZnO ceramic. Acta Mater 2016;119:136-44. https://doi.org/10.1016/j.actamat.2016.08.026.

[13]

Lu Z, Zhang H, Lei W, Sinclair DC, Reaney IM. High-Figure-of-Merit thermoelectric La-doped A-site-deficient SrTiO3 ceramics. Chem Mater 2016;28:925-35. https://doi.org/10.1021/acs.chemmater.5b04616.

[14]

Srivastava D, Norman C, Azough F, Schäfer MC, Guilmeau E, Kepaptsoglou D, et al. Tuning the thermoelectric properties of A-site deficient SrTiO3 ceramics by vacancies and carrier concentration. Phys Chem Chem Phys 2016;18:26475-86. https://doi.org/10.1039/c6cp05523k.

[15]

Singh SP, Kanas N, Desissa TD, Johnsson M, Einarsrud MA, Norby T, et al. Thermoelectric properties of A-site deficient La-doped SrTiO3 at 100–900 ℃ under reducing conditions. J Eur Ceram Soc 2020;40:401-7. https://doi.org/10.1016/j.jeurceramsoc.2019.09.024.

[16]

Kovalevsky AV, Yaremchenko AA, Populoh S, Weidenkaff A, Frade JR. Effect of A-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate. J Phys Chem C 2014;118:4596-606. https://doi.org/10.1021/jp409872e.

[17]

Fan Y, Kang L, Zhou W, Jiang W, Wang L, Kawasaki A. Control of doping by matrix in few-layer graphene/metal oxide composites with highly enhanced electrical conductivity. Carbon 2015;81:83-90. https://doi.org/10.1016/j.carbon.2014.09.027.

[18]

Miranzo P, Belmonte M, Osendi MI. From bulk to cellular structures: a review on ceramic/graphene filler composites. J Eur Ceram Soc 2017;37:3649-72. https://doi.org/10.1016/j.jeurceramsoc.2017.03.016.

[19]

Liao Q, Jin S, Wang C. Novel graphene-based composite as binder-free high-performance electrodes for energy storage systems. J Mater 2016;2:291-308. https://doi.org/10.1016/j.jmat.2016.09.002.

[20]

Lin Y, Dylla MT, Kuo JJ, Male JP, Kinloch IA, Freer R, et al. Graphene/strontium titanate: approaching single crystal–like charge transport in polycrystalline oxide perovskite nanocomposites through grain boundary engineering. Adv Funct Mater 2020:1910079. https://doi.org/10.1002/adfm.201910079.

[21]

Lin Y, Norman C, Srivastava D, Azough F, Wang L, Robbins M, et al. Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene. ACS Appl Mater Interfaces 2015;7:15898-908. https://doi.org/10.1021/acsami.5b03522.

[22]

Feng X, Fan Y, Nomura N, Kikuchi K, Wang L, Jiang W, et al. Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties. Carbon 2017;112:169-76. https://doi.org/10.1016/j.carbon.2016.11.012.

[23]

Backhaus-Ricoult M, Rustad JR, Vargheese D, Dutta I, Work K. Levers for thermoelectric properties in titania-based ceramics. J Electron Mater 2012;41:1636-47. https://doi.org/10.1007/s11664-012-2019-4.

[24]

David J, Trolliard G, Maître A. Transmission electron microscopy study of the reaction mechanisms involved in the carbothermal reduction of anatase. Acta Mater 2013;61:5414-28. https://doi.org/10.1016/j.actamat.2013.05.030.

[25]

Harada S, Tanaka K, Inui H. Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnéli phases. J Appl Phys 2010;108. https://doi.org/10.1063/1.3498801.

[26]

Terasaki O, Watanabe D. Electron m.Icroscopic study on the structure of tino2n-1(4≤n≤10) phases. Jpn J Appl Phys 1971;10:292-303. https://doi.org/10.1143/JJAP.10.292.

[27]

Afir A, Achour M, Saoula N. X-ray diffraction study of Ti-O-C system at high temperature and in a continuous vacuum. J Alloys Compd 1999;288:124-40. https://doi.org/10.1016/S0925-8388(99)00112-7.

[28]

Du H, Jia CL, Houben L, Metlenko V, De Souza RA, Waser R, et al. Atomic structure and chemistry of dislocation cores at low-angle tilt grain boundary in SrTiO3 bicrystals. Acta Mater 2015;89:344-51. https://doi.org/10.1016/j.actamat.2015.02.016.

[29]

Mizoguchi T, Sato Y, Buban JP, Matsunaga K, Yamamoto T, Ikuhara Y. Sr vacancy segregation by heat treatment at SrTiO3 grain boundary. Appl Phys Lett 2005;87:1-3. https://doi.org/10.1063/1.2146051.

[30]

Gu H. Chemical structure of grain-boundary layer in SrTiO3 and its segregation-induced transition: a continuum interface approach. Chin Phys B 2018;27. https://doi.org/10.1088/1674-1056/27/6/060503.

[31]

Xu B, Sohn HY, Mohassab Y, Lan Y. Structures, preparation and applications of titanium suboxides. RSC Adv 2016;6:79706-22. https://doi.org/10.1039/c6ra14507h.

[32]

Chiang Y-M, Takagi T. Grain-boundary chemistry of barium titanate and strontium titanate: Ⅰ, high-temperature equilibrium space charge. J Am Ceram Soc 1990;73:3278-85. https://doi.org/10.1111/j.1151-2916.1990.tb06450.x.

[33]

Blennow P, Hagen A, Hansen KK, Wallenberg LR, Mogensen M. Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ionics 2008;179:2047-58. https://doi.org/10.1016/j.ssi.2008.06.023.

[34]

Liu C, Miao L, Zhou J, Huang R, Fisher CAJ, Tanemura S. Chemical tuning of TiO2 nanoparticles and sintered compacts for enhanced thermoelectric properties. J Phys Chem C 2013;117:11487-97. https://doi.org/10.1021/jp401132g.

[35]

Ruiz A, Dezanneau G, Arbiol J, Cornet A, Morante JR. Study of the influence of Nb content and sintering temperature on TiO2 sensing films. Thin Solid Films 2003;436:90-4. https://doi.org/10.1016/S0040-6090(03)00515-7.

[36]

Crespillo ML, Graham JT, Agulló-López F, Zhang Y, Weber WJ. Role of oxygen vacancies on light emission mechanisms in SrTiO3 induced by high-energy particles. J Phys D Appl Phys 2017;50:155303. https://doi.org/10.1088/1361-6463/aa627f.

[37]

Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys Rev B Condens Matter 2007;75:2-5. https://doi.org/10.1103/PhysRevB.75.121404.

[38]

Zhu S, Li J, Xing J, Jiang Y, Hu D, Wang X, et al. Cathodoluminescence characteristics of a novel core‒rim structure in Bi-doped (Sr,Ba)TiO3 ceramics. Ceram Int 2019;45:8027-31. https://doi.org/10.1016/j.ceramint.2019.01.002.

[39]

Yang KH, Chen TY, Ho NJ, Lu HY. In-gap states in wide-band-gap SrTiO3 analyzed by cathodoluminescence. J Am Ceram Soc 2011;94:1811-6. https://doi.org/10.1111/j.1551-2916.2010.04324.x.

[40]

Kan D, Terashima T, Kanda R, Masuno A, Tanaka K, Chu S, et al. Blue-light emission at room temperature from Ar + -irradiated SrTiO3. Nat Mater 2005;4:816-9. https://doi.org/10.1038/nmat1498.

[41]

Janotti A, Varley JB, Choi M, Van De Walle CG. Vacancies and small polarons in SrTiO3. Phys Rev B Condens Matter 2014;90:1-6. https://doi.org/10.1103/PhysRevB.90.085202.

[42]

Fan Y, Feng X, Zhou W, Murakami S, Kikuchi K, Nomura N, et al. Preparation of monophasic titanium sub-oxides of Magnéli phase with enhanced thermoelectric performance. J Eur Ceram Soc 2018;38:507-13. https://doi.org/10.1016/j.jeurceramsoc.2017.09.040.

Journal of Materiomics
Pages 366-376
Cite this article:
Li J, Wu C, Huang J, et al. Graphene controlled phase evolution in Sr-deficient Sr(Ti, Nb)O3 thermoelectric ceramics. Journal of Materiomics, 2021, 7(2): 366-376. https://doi.org/10.1016/j.jmat.2020.07.004

51

Views

12

Crossref

N/A

Web of Science

12

Scopus

Altmetrics

Received: 30 March 2020
Revised: 08 June 2020
Accepted: 02 July 2020
Published: 17 July 2020
© 2020 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return