AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Core‒rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2‒SiC‒MC ceramics (M=Nb, Hf, Ta, W)

Dong-Li Hua,bHui Gua( )Ji ZoucQiang ZhengdGuo-Jun Zhange
School of Materials Sciences and Engineering, Materials Genome Institute, Shanghai University, Shanghai, 200444, China
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
School of Metallurgy and Materials, University of Birmingham, B15 2TT, UK
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Institute of Function Materials, Donghua University, Shanghai, 201620, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

• Core-rim structures are common in UHTCs and associated with bisolubility of dopants by solution-reprecipitation.

• Sharp boundary between core/rim leads to intra-phase relation, evaluated by g-point in the sintering schedule.

• Core-rim structures contain strain energy for self-strengthening; metal diffusion can strengthen grain boundary.

Graphical Abstract

Abstract

Core‒rim structures were identified as a common feature in hot-pressed ZrB2‒SiC‒MC ceramics (M = Nb, Hf, Ta and W) by a combination of X-ray diffraction, scanning and transmission electron microscopies. Quantitative analyses associate them with the bi-solubility of M in ZrB2 phase, in which transition of solubility across the core/rim boundary is abrupted, signifying their creation via dissolution‒reprecipitation process facilitated by transient liquid-phase. The cores were retained from starting powder after surface melting and the rims were grown from the liquid-phase to incorporate more solutes, leaving the residual liquid to turn into ZrC phase with higher solubility of M. We propose g-point scheme in the ZrB2MB2 diagrams to combine the bi-solubility and the core‒rim structures into an intra-phase relationship created by sintering, leading further to a hierarchical phase relationship. The temperature dependence of flexural strength in the ZrB2‒SiC‒MC ceramics varies with MC additions, which can be respectively strengthened by the strain energy created in the core‒rim structures and metal segregation to grain boundaries.

References

[1]

Post B, Glaser FW, Moskowitz D. Transition metal diborides. Acta Metall 1954;2:20–5. https://doi.org/10.1016/0001-6160(54)90090-5.

[2]

Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. J Am Ceram Soc 2007;90:1347–64. https://doi.org/10.1111/j.1551-2916.2007.01583.x.

[3]

Monteverde F. Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Appl Phys Mater Sci Process 2006;82:329–37. https://doi.org/10.1007/s00339-005-3327-9.

[4]

Zhang SC, Hilmas GE, Fahrenholtz WG. Mechanical properties of sintered ZrB2-SiC ceramics. J Eur Ceram Soc 2011;31:893–901. https://doi.org/10.1016/j.jeurceramsoc.2010.11.013.

[5]

Zou J, Zhang GJ, Kan YM, Wang PL. Hot-pressed ZrB2-SiC ceramics with VC addition: chemical reactions, microstructures, and mechanical properties. J Am Ceram Soc 2009;92:2838–46. https://doi.org/10.1111/j.1551-2916.2009.03293.x.

[6]

Zou J, Zhang GJ, Kan YM. Formation of tough interlocking microstructure in ZrB2-SiC-based ultrahigh-temperature ceramics by pressureless sintering. J Mater Res 2009;24:2428–34. https://doi.org/10.1557/jmr.2009.0274.

[7]

Zou J, Sun SK, Zhang GJ, Kan YM, Wang PL, Ohji T. Chemical reactions, anisotropic grain growth and sintering mechanisms of self-reinforced ZrB2-SiC doped with WC. J Am Ceram Soc 2011;94:1575–83. https://doi.org/10.1111/j.1551-2916.2010.04278.x.

[8]

Zou J, Zhang GJ, Sun SK, Liu HT, Kan YM, Liu JX, et al. ZrO2removing reactions of Groups Ⅳ-Ⅵ transition metal carbides in ZrB2based composites. J Eur Ceram Soc 2011;31:421–7. https://doi.org/10.1016/j.jeurceramsoc.2010.10.011.

[9]

Zou J, Zhang GJ, Hu CF, Nishimura T, Sakka Y, Vleugels J, et al. Strong ZrB2-SiC-WC ceramics at 1600℃. J Am Ceram Soc 2012;95:874–8. https://doi.org/10.1111/j.1551-2916.2011.05062.x.

[10]

Zheng Q, Xu NA, Gu H, Zhang GJ, Wu WW. Effect of ZrO2 impurity on promoting reactive sintering of ZrB2 -SiC-ZrC composites. Int J Mater Res 2013;104:675–9. https://doi.org/10.3139/146.110912.

[11]

Hu DL, Zheng Q, Gu H, Ni DW, Zhang GJ. Role of WC additive on reaction, solid-solution and densification in HfB2-SiC ceramics. J Eur Ceram Soc 2014;34:611–9. https://doi.org/10.1016/j.jeurceramsoc.2013.10.007.

[12]

Talmy IG, Zaykoski JA, Opeka MM, Dallek S. Oxidation of ZrB2 ceramics modified with SiC and group Ⅳ-Ⅵ transition metal borides. Electrochem. Soc. Proc. 2001;12:144–58.

[13]

Akselrud LG, Zavalii PY, Grin YN, Pecharski VK, Baumgartner B, Wölfel E. Use of the CSD program package for structure determination from powder data. Mater Sci Forum 1993;133–136:335–42. https://doi.org/10.4028/www.scientific.net/msf.133-136.335.

[14]

Denton AR, Ashcroft NW. Vegard’s law. Phys Rev 1991;43:3161–4. https://doi.org/10.1103/PhysRevA.43.3161.

[15]

Vegard L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift Für Phys 1921;5:17-26. https://doi.org/10.1007/BF01349680.

[16]

Zheng Q, Wang XH, Xing JJ, Gu H, Zhang GJ. Quantitative analysis for phase compositions of ZrB2-SiC-ZrC ultra-high temperature ceramic composites. J Inorg Mater 2013;28:358–62. https://doi.org/10.3724/SP.J.1077.2013.12334.

[17]

Wang XH, Gu H. EDS quantitive analysis of niobates in TEM via self-correction method. J Chine Elec Micro Soc 2009;28:318–24.

[18]
PDF-2 data base: No. 65-3389, 29-1131, 35-0784, 35-0738 and 65-0466.
[19]

Sciti D, Silvestroni L, Celotti G, Melandri C, Guicciardi S. Sintering and mechanical properties of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites. J Am Ceram Soc 2008;91:3285–91. https://doi.org/10.1111/j.1551-2916.2008.02593.x.

[20]

Monteverde F. The addition of SiC particles into a MoSi2-doped ZrB2 matrix: effects on densification, microstructure and thermo-physical properties. Mater Chem Phys 2009;113:626–33. https://doi.org/10.1016/j.matchemphys.2008.07.091.

[21]

Silvestroni L, Sciti D. Densification of ZrB2-TaSi2 and HfB2-TaSi2 ultra-high-temperature ceramic composites. J Am Ceram Soc 2011;94:1920–30. https://doi.org/10.1111/j.1551-2916.2010.04317.x.

[22]
Chiang YM, Birnie DP, Kingery WD. Physical ceramics: principles for ceramic science and engineering. New York: John Wiley & Sons; 1997. p. 521–2.
[23]

Sigl LS, Kleebe HJ. Core/rim structure of liquid-phase-sintered silicon carbide. J Am Ceram Soc 1993;76:773–6. https://doi.org/10.1111/j.1151-2916.1993.tb03677.x.

[24]

Hwang SL, Chen IW. Nucleation and growth of α’-SiAlON on α-Si3N4. J Am Ceram Soc 1994;77:1711–8. https://doi.org/10.1111/j.1151-2916.1994.tb07041.x.

[25]

Hu J, Gu H, Chen Z, Tan S, Jiang D, Rühle M. Core-shell structure from the solution-reprecipitation process in hot-pressed AlN-doped SiC ceramics. Acta Mater 2007;55:5666–73. https://doi.org/10.1016/j.actamat.2007.06.037.

[26]

Camuşcu N, Thompson DP, Mandal H. Effect of starting composition, type of rare earth sintering additive and amount of liquid phase on α ⇄ β sialon transformation. J Eur Ceram Soc 1997;17:599–613. https://doi.org/10.1016/s0955-2219(96)00112-4.

[27]

Rosenflanz A, Chen IW. Kinetics of phase transformations in SiAlON ceramics: Ⅰ. effects of cation size, composition and temperature. J Eur Ceram Soc 1999;19:2325–48. https://doi.org/10.1016/s0955-2219(99)00097-7.

[28]

Chen IW, Shuba RA, Zenotchkine MY. Development of tough Alpha-SiAlON. Key Eng Mater 2003;237:65–78. https://doi.org/10.4028/www.scientific.net/kem.237.65.

[29]

Huang R, Gu H, Aldinger F. Intergranular oxynitride to regulate solution–reprecipitation process in gas–pressure–sintered SiC ceramics with AlN–Y2O3 additives. Adv Eng Mater 2018;1800821:1–11. https://doi.org/10.1002/adem.201800821.

[30]

Zheng Q, Gu H, Hu D-L, Zhang G-J. Transiant liquid-phase to guide multiphase evolution in reactive-hot-pressed ZrB2‒SiC‒ZrC ceramics. Journal of Materiomics 2020;6(3):607–17. https://doi.org/10.1016/j.jmat.2020.05.001.

[31]

Otani S, Aizawa T, Kieda N. Solid solution ranges of zirconium diboride with other refractory diborides: HfB2, TiB2, TaB2, NbB2, VB2 and CrB2. J Alloys Compd 2009;475:273–5. https://doi.org/10.1016/j.jallcom.2008.08.023.

[32]

Zhang SC, Hilmas GE, Fahrenholtz WG. Oxidation of zirconium diboride with tungsten carbide additions. J Am Ceram Soc 2011;94:1198–205. https://doi.org/10.1111/j.1551-2916.2010.04216.x.

[33]

Hu TY, Yao MY, Hu DL, Gu H, Wang YJ. Effect of mechanical alloying on sinterability and phase evolution in pressure-less sintered TiB2‒TiC ceramics. J Mater 2019;5:670–8. https://doi.org/10.1016/j.jmat.2019.05.001.

[34]

Silvestroni L, Kleebe HJ, Fahrenholtz WG, Watts J. Super-strong materials for temperatures exceeding 2000 ℃. Sci Rep 2017;7:1–8. https://doi.org/10.1038/srep40730.

Journal of Materiomics
Pages 69-79
Cite this article:
Hu D-L, Gu H, Zou J, et al. Core‒rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2‒SiC‒MC ceramics (M=Nb, Hf, Ta, W). Journal of Materiomics, 2021, 7(1): 69-79. https://doi.org/10.1016/j.jmat.2020.07.005

59

Views

13

Crossref

N/A

Web of Science

19

Scopus

Altmetrics

Received: 13 March 2020
Revised: 14 June 2020
Accepted: 08 July 2020
Published: 16 August 2020
© 2020 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return