AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Super-conductive silver nanoparticles functioned three-dimensional CuxO foams as a high-pseudocapacitive electrode for flexible asymmetric supercapacitors

Hui JiangaXuehua Yana,b,c( )Jieyu MiaoaMingyu YouaYihan ZhuaJianmei PanaLe WangaXiaonong Chenga
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
Institute for Advanced Materials, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
Institute of Green Materials and Metallurgy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

• CuxO nanowires are vertically grown on Cu foam via a facile surface oxidation.

• Ag nanoparticles are then decorated CuxO nanowires via a replacement reaction.

• The electrode shows a maximum specific capacitance of 1192 mF cm−2 at 2 mA cm−2.

• The contribution ratio of pseudocapacitance for capacitive process is discussed.

• A 2V LED is lighted up for 90 s by two ASC in series.

Graphical Abstract

Abstract

Copper oxide has aroused great concern in energy storage fields due to its properties of high theoretical capacitance, low cost and mild toxicity. However, its wide application still remains challenges owing to its poor electrical conductivity and unstable cycling life. Binder-free foam electrodes possess abundant porous structures and high specific surface area, which could get good contact with electrolyte. Herein, we demonstrate Ag nanoparticles decorated CuxO nanowires grown spontaneously on copper foam (CF) electrode for asymmetric supercapacitor. The skeleton structure of CF provides large amounts of active sites for the growth of CuxO nanowires. Moreover, Ag nanoparticles further decrease the internal resistance and enhance the electrochemical performance. Ag/CuxO/CF-40 electrode presents a high area specific capacitance of 1192 mF cm−2 at 2 mA cm−2 and the influence of surface capacitance-dominated process and diffusion-controlled process are discussed in detail. Besides, the energy density of the as-prepared asymmetric supercapacitor (ASC) reaches 46.32 μWh cm−2 at a power density of 3.00 mW cm−2. A 2V LED is lighted successfully by two ASC in series. This work provides a new strategy to prepare low internal resistance and binder-free flexible Ag/CuxO/CF electrode, which demonstrates a good potential application in flexible supercapacitors or other wearable electronic devices.

References

[1]

Nagaraju G, Sekhar S, Ramulu B, Veerasubramani G, Narsimulu D, Hussain S, Yu J. An agriculture-inspired nanostratergy towards flexible and highly efficient hybrid supercapacitors using ubiquitous substrates. Nano Energy 2019;66:104054.

[2]

Gao Y, Zhai Z, Huang K, Zhang Y. Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New J Chem 2017;41:11456-70.

[3]

Seevakan K, Manikandan A, Devendran P, Slimani Y. Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram Int 2018;44:20075-83.

[4]

Wu J, Gao X, Yu H, Ding T, Yan Y, Yao B, Yao X, Chen D, Liu M, Huang L. A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6V) in an aqueous electrolyte. Adv Funct Mater 2016;26:6114-20.

[5]

Zhou D, Lin H, Zhang F, Niu H. Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes. Electrochim Acta 2015;161:427-35.

[6]

Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014;4:1300816.

[7]

Dong L, Xu C, Li Y, Huang Z, Kang F, Yang Q. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem 2016;4:4659-85.

[8]

Chen Q, Chen J, Zhou Y, Song C. Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon. Appl Surf Sci 2018;440:1027-36.

[9]

Ahmani F, Kazemi S, Kazemi H, Kiani M, Feizabadi S. Nanocomposite of copper-molybdenum-oxide nanosheets with graphene as high-performance materials for supercapacitors. J Alloys Compd 2019;784:500-12.

[10]

Kazemi S, Maghami M, Kiani M. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: high performance materials for supercapacitor applications. Mater Res Bull 2014;60:137-42.

[11]

Zhang C, Xu Y, Du G, Wu Y, Li Y, Zhao H, Kaiser U, Lei Y. Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy 2020;72. 104661.

[12]

Guo C, Zhang Y, Zeng T, Huang D, Wan Q, Yang N. High-performance asymmetric supercapacitors using holey graphene electrodes and redox electrolytes. Carbon 2020;157:298-307.

[13]

Sun J, Li W, E L, Xu Z, Ma C, Wu Z, Liu S. Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials. J Power Sources 2019;438:227030.

[14]

Oschatz M, Boukhalf S, Nickel W, Hofmann J, Fischer C, Yushin G, Kaskel S. Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon 2017;113:283-91.

[15]

Liu Y, Guo S, Zhang W, Kong W, Wang Z, Yan W. Three-dimensional interconnected cobalt sulfide foam: controllable synthesis and application in supercapacitor. Electrochim Acta 2019;317:551-61.

[16]

Huang H, He J, Wang Z, Zhang H, Jin L, Chen N, Xie Y. Scalable and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors. Nano Energy 2020;69:104431.

[17]

Jiang Q, Lei Y, Liang H, Xi K, Xia C, Alshareef H. Review of MXene electrochemical microsupercapacitors. Energy Storage Mater. 2020;27:78-95.

[18]

Meng Q, Cai K, Chen Y, Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017;36:268-85.

[19]

Poonam, Sharm K, Arora A, Tripathi S. Review of supercapacitors: materials and devices. J. Energy Storage 2019;21:801-25.

[20]

Liu X, Zhang X. NiO-based composite electrode with RuO2 for electrochemical capacitors. Electrochim Acta 2004;49:229-32.

[21]

Zou Z, Xiao W, Zhang Y, Yu H, Zhou W. Facile synthesis of freestanding cellulose/RGO/silver/Fe2O3 hybrid film for ultrahigh-areal-energy-density flexible solid-state supercapacitor. Appl Surf Sci 2020;500:144244.

[22]

L. Wang, M. Huang, S. Chen, L. Kang, X. He, δ-MnO2 nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance, J. Mater. Chem. 5 (36) 19107-19115.

[23]

X. Zhou, Q. Chen, A. Wang, J. Xu, S. Wu, J. Shen, The bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors, ACS Appl Mater Interfaces 8 (6) 3776–3783.

[24]

Wang S, Hu J, Jiang L, Li X, Cao J. High performance 3D CuO/Cu flowers supercapacitor electrodes by femtosecond laser enhanced electrochemical anodization. Electrochim Acta 2019;293:273-82.

[25]

Lu Y, Xu J, Ren S, Zhong Y, Gao X. Ionic-liquid-assisted one-pot synthesis of Cu2O nanoparticles/multi-walled carbon nanotube nanocomposite for high-performance asymmetric supercapacitors. RSC Adv 2018;8:20182.

[26]

Shinde S, Yadav H, Ghodake G, Kadam A, Kumbhar V, Yang J, Hwang K, Jagadale A, Kumar S, Kim D. Using chemical bath deposition to create nanosheet-like CuO electrodes for supercapacitor applications. Colloids Surf, B 2019;181:1004-11.

[27]

Patil A, Lokhande V, Ji T, Lokhande C. New design of all-solid state asymmetric flexible supercapacitor with high energy storage and long term cycling stability using m-CuO/FSS and h-CuS/FSS electrodes. Electrochim Acta 2019;307:30-42.

[28]

Das P, Shi X, Fu Q, Wu Z. Substrate-free and shapeless planar micro-supercapacitor. Adv Funct Mater 2019;30:1908758.

[29]

Zhang L, Yang G, Chen Z, Liu D, Wang J, Qian Y, Chen C, Liu Y, Wang L, Razal J, Lei W. MXene coupled with molybdenum dioxide nanoparticles as 2D-0D pseudocapacitive electrode for high performance flexible asymmetric micro-supercapacitors. J. Materiomics 2020;6:138-44.

[30]

Zhang L, Chen Z, Zheng S, Qin S, Wang J, Chen C, Liu D, Wang L, Yang G, Su Y, Wu Z, Bao X, Razal J, Lei W. Shape-tailorable high-energy asymmetric micro-supercapacitors based on plasma reduced and nitrogen-doped graphene oxide and MoO2 nanoparticles. J Mater Chem A 2019;7:14328-36.

[31]

Cao M, Feng Y, Tian R, Chen Q, Chen J, Jia M, Yao J. Free-standing porous carbon foam as the ultralight and flexible supercapacitor electrode. Carbon 2020;161:224-30.

[32]

Liu Y, Wang Y, Shi C, Chen Y, Li Dan, He Z, Wang C, Guo L, Ma J. Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor. Carbon 2020;165:129-38.

[33]

Azad M, Hussain Z, Baig M. MWCNTs/NiS2 decorated Ni foam based electrode for high-performance supercapacitors. Electrochim Acta 2020;345:136196.

[34]

Ren J, Ren R, Lv Y. Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chem Eng J 2018;349:111-8.

[35]

He X, Hu Y, Tian H, Li Z, Huang P, Jiang J, Wang C. In-situ growth of flexible 3D hollow tubular Cu2S nanorods on Cu foam for high electrochemical performance supercapacitor. J. Materiomics 2020;6:192-9.

[36]

Wu S, Guo H, Hui K, Hui K. Rational design of integrated CuO@CoxNi1-x(OH)2 nanowire arrays on copper foam for high-rate and long-life supercapacitors. Electrochim Acta 2019;295:759-68.

[37]

He D, Wang G, Liu G, Suo H. Construction of leaf-like CuO-Cu2O nanocomposite on copper foam for high-performance supercapacitors. Dalton Trans 2017;46:3318-24.

[38]

Dubal D, Gund G, Holze R, Lokhande C. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J Power Sources 2013;242:687-98.

[39]

Yin M, Wu C, Lou Y, Burda C, Koberstein J, Zhu Y, O’Brien S. Copper oxide nanocrystals. J Am Chem Soc 2005;127:9506-11.

[40]

Majumder M, Choudhary R, Thakur A, Karbhal I. Impact of rare-earth metal oxide (Eu2O3) on the electrochemical properties of a polypyrrole/CuO polymeric composite for supercapacitor applications. RSC Adv 2017;7:20037.

[41]

Niu L, Wang Y, Shan S, Ruan F, Xu M, Sun Z. Facilely synthesis of 3D CuxO-Cu nanostructures as binder-free electrode for supercapacitors. Chem Phys Lett 2016;652:172-6.

[42]

Wang K, Dong X, Zhao C, Qian X, Xu Y. Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim Acta 2015;152:433-42.

[43]

Li Y, Chang S, Liu X, Huang J, Yin J, Wang G, Cao D. Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim Acta 2012;85:393-8.

[44]

Shinde S, Dubal D, Ghodake G. Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RCS Adv. 2015;5:4443-7.

[45]

Shu X, Wang Y, Cui J, Xu G, Zhang J, Yang W. Supercapacitive performance of single phase CuO nanosheet arrays with ultra-long cycling stability. J Alloys Compd 2018;753:731-9.

[46]

Chen H, Zhou M, Wang T, Li F, Zhang Y. Construction of unique cupric oxide–manganese dioxide core–shell arrays on a copper grid for high performance supercapacitors. J Mater Chem 2016;4:10786-93.

[47]

Conway BE. Electrochemical Supercapacitors: scientific fundamentals and technological applications. Springer; 1999.

[48]

Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 2016;45:5925-50.

[49]

Augustyn V, Come J, Lowe M, Kim J, Taberna P, Tolbert S, Abruña H, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 2013;12:518-22.

[50]

Brezesinski T, Wang J, Tolbert S, Dunn B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 2010;9:146-51.

[51]

Javed M, Han X, Hu C, Zhou M, Huang Z, Tang X. Tracking pseudocapacitive contribution to superior energy storage of MnS nanoparticles grown on carbon textile. ACS Appl Mater Interfaces 2016;8:24621-8.

[52]

Zhang M, Fan H, Ren X, Zhao N, Peng H. Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays. J Power Sources 2019;418:202-10.

[53]

Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 2007;111:14925-31.

[54]

Zhu S, Wu M, Ge M, Zhang H, Li S, Li C. Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors. J Power Sources 2016;306:593-601.

[55]

Cha S, Nagaraju G, Sekhara S, Yu J. A facile drop-casting approach to nanostructured copper oxide-painted conductive woven textile as binder-free electrode for improved energy storage performance in redox-additive electrolyte. J Mater Chem A 2017;5:2224-34.

[56]

Purushothaman K, Saravanakumar B, Babu I, Sethuramana B, Muralidharn G. Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv 2014;4:23485-91.

[57]

Zhou H, Han G, Xiao Y, Chang Y, Zhai H. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sources 2014;263:259-67.

[58]

Jian X, Li J, Yang H, Cao L, Zhang E, Liang Z. Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon 2017;114:533-43.

Journal of Materiomics
Pages 156-165
Cite this article:
Jiang H, Yan X, Miao J, et al. Super-conductive silver nanoparticles functioned three-dimensional CuxO foams as a high-pseudocapacitive electrode for flexible asymmetric supercapacitors. Journal of Materiomics, 2021, 7(1): 156-165. https://doi.org/10.1016/j.jmat.2020.07.008

66

Views

25

Crossref

N/A

Web of Science

36

Scopus

Altmetrics

Received: 16 May 2020
Revised: 08 July 2020
Accepted: 22 July 2020
Published: 11 August 2020
© 2020 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return