AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-doping

Xuewen Jianga,bHua Haoa,b( )Yang YangbEnhao ZhoubShujun ZhangdPing WeieMinghe CaobZhonghua Yaoa,bHanxing Liuc
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
Nanostructure Research Centre, Wuhan University of Technology, Wuhan, 430070, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

• The Ca ion substituting Ti ion was confirmed in BaTi1-xCaxO3-x [BTC100×] (0 ≤ x ≤ 0.05) ceramic system.

• The low temperature stability of dieletric constant was improved with the Ca ion substituting Ti ion.

• The dielectric-temperature stability was improved further with the addition of Bi(Zn0.5Ti0.5)O3 (BZT) into BTC4.

• The dielectric temperature stability of 0.85BTC4-0.15BZT ceramics met the requirement of X9R capacitor specification.

Graphical Abstract

Abstract

Capacitor is an important part of many electronic devices, so the temperature stability as one key parameter of capacitor needs to be improved constantly for meeting the requirements of various application temperature. Here, combined with the X-ray diffraction (XRD), selected area electron diffraction (SAED) and Vienna Ab-initio Simulation Package (VASP) calculation, it was confirmed that Ca ion can substitute the Ti site in the BaTi1-xCaxO3-x [BTC100×] (0 ≤ x ≤ 0.05) ceramics synthesized by solid-phase method which greatly improved the low-temperature stability of dielectric constant. Moreover, introducing Bi3+ and Zn2+ into BTC4 to form (1-y)BaTi0·96Ca0·04O2.96-yBi(Zn0·5Ti0.5)O3 [(1-y)BTC4-yBZT] (0.1 ≤ y ≤ 0.2) ceramics can further improve the dielectric-temperature stability by means of diffused phase transition and core-shell structure. Most importantly, the 0.85BTC4-0.15BZT ceramics with a pseudocubic perovskite structure possessed a temperature coefficient of capacitance at 25 ℃ (TCC25 ℃) being less than ±15% over a wide temperature range of −55 ℃–200 ℃ and a temperate dielectric constant (ε = 1060) and low dielectric loss (tanδ = 1.5%), which measure up to the higher standard in the current capacitor industry such as X9R requirements.

References

[1]

Morito K. Multi-layer ceramic capacitor. Curr Opin Solid St M 2017;1(3):173-6.

[2]

Sun Y, Liu HX, Hao H, Zhang L, Zhang SJ. The role of Co in the BaTiO3-Na0.5Bi0.5TiO3 based X9R ceramics. Ceram Int 2015;41(1):931-9.

[3]

Chen LL, Hui KZ, Wang HX, Zhao PY, Li LT, Wang XH. Effects of Ho2O3 doping and sintering temperature on the core-shell structure of X9R Nb-modified BaTiO3-(Bi0.5Na0.5)TiO3 ceramics. J Eur Ceram Soc 2019;39(13):3710-5.

[4]

Wang T, Wang XH, Wen H, Li LT. Effect of milling process on the core-shell structures and dielectric properties of fine-grained BaTiO3-based X7R ceramic materials. Int J Min Met Mater 2009;16(3):345-8.

[5]

Yoon S, Kim M. Influence of temperature on the dielectric nonlinearity of BaTiO3-based multi-layer ceramic capacitors. Appl Phys Lett 2016;108(24):242902.

[6]

Wang DW, Fan ZM, Rao GH, Wang G, Liu Y, Yuan CL. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nanomater Energy 2020;76:104944.

[7]

Chen XL, Li X, Sun J, Sun CC, Shi JP, Pang FH. Achieving ultrahigh energy storage density and energy efficiency simultaneously in barium titanate based ceramics. Appl Phys A 2020;126(2):146.

[8]

Lai X, Hao H, Liu Z, Li SS, Liu YR, Emmanuel M. Structure and dielectric properties of MgO-coated BaTiO3 ceramics. J Mater Sci Mater Electron 2020;31(11):8963-70.

[9]

Liu G, Li Y, Shi MQ, Yu LJ, Chen P, Yu K. An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram Int 2019;45(15):19189-96.

[10]

Buscaglia MT, Viviani M, Zhao Z, Buscaglia V, Nanni P. Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure. Chem Mater 2006;18(17):4002-10.

[11]

Wang T, Hao H, Liu MY, Zhou DD, Yao ZH, Cao MH. X9R BaTiO3-Based dielectric ceramics with multilayer core-shell structure produced by polymer-network gel coating method. J Am Ceram Soc 2015;98(3):690-3.

[12]

Hao H, Liu MY, Liu HX, Zhang SJ, Shu X, Wang T. Design, fabrication and dielectric properties in core-double shell BaTiO3-based ceramics for MLCC application. RSC Adv 2015;5(12):8868-76.

[13]

Chen XL, Chen J, Huang GS, Ma DD, Fang L, Zhou HF. Relaxor behavior and dielectric properties of Bi(Zn2/3Nb1/3)O3-modified BaTiO3 ceramics. J Electron Mater 2015;44(12):4804-10.

[14]

Chen XL, Chen J, Ma DD, Fang L, Zhou HF. Thermally stable BaTiO3-Bi(Mg2/3Nb1/3)O3 solid solution with high relative permittivity in a broad temperature usage range. J Am Ceram Soc 2015;98(3):804-10.

[15]

Li WB, Zhou D, Xu R, Pang LX, Reaney IM. BaTiO3–Bi(Li0.5Ta0.5)O3, lead-free ceramics, and multilayers with high energy storage density and efficiency. ACS Appl Energy Mater 2018;1(9):5016-23.

[16]

Chen XL, Li XX, Huang GS, Liu GF, Yan X, Zhou HF. Excellent thermal stability and low dielectric loss of (1-x)BaTiO3-xBi(Li0.5Nb0.5)O3 solid solutions in a broad temperature range applied in X8R. J Mater Sci Mater Electron 2017;28(22):17278-82.

[17]

Liu MY, Hao H, Zhen YC, Wang T, Zhou DD, Liu HX. Temperature stability of dielectric properties for xBiAlO3-(1-x)BaTiO3 ceramics. J Eur Ceram Soc 2015;35(8):2303-11.

[18]

Xiong B, Hao H, Zhang SJ, Liu HX, Cao MH. Structure, dielectric properties and temperature stability of BaTiO3-Bi(Mg1/2Ti1/2)O3 perovskite solid solutions. J Am Ceram Soc 2011;94(10):3412-7.

[19]

Ogihara H, Randall CA, Trolier-McKinstry S. Weakly coupled relaxor behavior of BaTiO3-BiScO3 ceramics. J Am Ceram Soc 2009;92(1):110-8.

[20]

Huang C, Cann DP. Phase transitions and dielectric properties in Bi(Zn1/2Ti1/2)O3-BaTiO3 perovskite solid solutions. J Appl Phys 2008;104(2):24117.

[21]

Qi TT, Grinberg I, Rappe AM. First-principles investigation of the highly tetragonal ferroelectric material Bi(Zn1/2Ti1/2)O3. Phys Rev B 2009(79):94114-8.

[22]

Yang XJ, Liu XB, Ding SH. The defect and dielectric properties of Nb and Mn co-doping BaTiO3 ceramics. Ferroelectrics 2018;533:132-8.

[23]

Yang Y, Hao H, Zhang L, Chen C, Luo Z, Liu Z. Structure, electrical and dielectric properties of Ca substituted BaTiO3 ceramics. Ceram Int 2018;44(10):11109-15.

[24]

Park J, Lee Y, Kim K, Kim Y. Structural study of Ca doped barium titanate. Nucl Instrum Methods B 2012;284:44-8.

[25]

Zhang L, Thakur OP, Feteira A, Keith GM, Mould AG, Sinclair DC. Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics. Appl Phys Lett 2007;90(14):142914.

[26]

Hennings DFK, Schreinemacher H. Ca-acceptors in dielectric ceramics sintered in reductive atmospheres. J Eur Ceram Soc 1995;15(8):795-800.

[27]

Zhu XN, Zhang W, Chen XM. Enhanced dielectric and ferroelectric characteristics in Ca-modified BaTiO3 ceramics. AIP Adv 2013;3(8):82125.

[28]

Zhong N, Yao WL, Xiang PH, Feng CD, Kojima S. Calcium substituting B-site in relaxor ferroelectrics with perovskite structure probed by chemical ordering. Solid State Commun 2005;134(6):425-9.

[29]

Chang MC, Yu S. Raman study for (Ba1-xCax)TiO3 and Ba(Ti1-yCay)O3 crystalline ceramics. J Mater Sci Lett 2000;19:1323-5.

[30]

Chang MC, Sugihara S. The electronic states of Ba1-xCaxTiO3 and BaTi1yCayO3 crystalline ceramics. J Mater Sci Lett 2001;20:237-9.

[31]

Lu DY, Yue Y, Sun XY. Novel X7R BaTiO3 ceramics co-doped with La3+ and Ca2+ ions. J Alloys Compd 2014;586(15):136-41.

[32]

Rase DE, Roy R. Phase equilibria in the system BaO-TiO2. J Am Ceram Soc 1955;38:102-13.

[33]

Phan T, Thang PD, Ho TA, Manh TV, Thanh TD, Lam VD. Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics. J Appl Phys 2015;117(17):17D-904D.

[34]

Ye SK, Fuh J, Lu L. Effects of Ca substitution on structure, piezoelectric properties, and relaxor behavior of lead-free Ba(Ti0.9Zr0.1)O3 piezoelectric ceramics. J Alloys Compd 2012;541(15):396-402.

[35]

Jiang XW, Hao H, Zhang SJ, Lv JH, Cao MH, Yao ZH. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J Eur Ceram Soc 2019;39(4):1103-9.

[36]

Usher T, Iamsasri T, Forrester JS, Raengthon N, Triamnak N, Cann DP. Local and average structures of BaTiO3-Bi(Zn1/2Ti1/2)O3. J Appl Phys 2016;120(18):184102.

[37]

Oberhofer H, Blumberger J. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set. J Chem Phys 2010;133(24):244105.

[38]

Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 2008;29(13):2044-78.

[39]

Sharma V, Pilania G, Rossetti GA, Slenes K, Ramprasad R. Comprehensive examination of dopants and defects in BaTiO3 from first principles. Phys Rev B 2013;87(13):162-8.

[40]

Yao GF, Wang XH, Yang Y, Li LT. Effects of Bi2O3 and Yb2O3 on the curie temperature in BaTiO3-based ceramics. J Am Ceram Soc 2010;93(6):1697-701.

[41]

Liu Y, McCabe EE, Sinclair DC, West AR. Synthesis, structure and properties of the hexagonal perovskite, h-BaTi1-xHoxO3-x/2. J Mater Chem 2009;19(29):5201.

[42]

Huang XC, Liu HX, Song Z, Hao H, Zhang WQ, Xu Q. Structure-property relationships in BaTiO3-(Na1/4Bi3/4)(Mg1/4Ti3/4)O3 lead-free ceramics. J Eur Ceram Soc 2016;36(3):533-40.

[43]

Yoon S, Kang S, Kwon S, Hur K. Resistance degradation behavior of Ca-doped BaTiO3. J Mater Res 2010;25(11):2135-42.

[44]

Chen X, Wang Y, He F, Zhou H, Fang L, Liu L. Effects of Bi(Zn0.5Zr0.5)O3 addition on the structure and electric properties of BaTiO3 lead-free piezoelectric ceramics. Ceram Int 2013;39(4):3747-51.

[45]

Ouni IB, Chapron D, Aroui H, Fontana MD. Ca doping in BaTiO3 crystal: effect on the Raman spectra and vibrational modes. J Appl Phys 2017;121(11):114102.

[46]

Pokorný J, Pasha UM, Ben L, Thakur OP, Sinclair DC, Reaney IM. Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J Appl Phys 2011;109(11):114110.

[47]

Feteira A, Sinclair DC, Lanagan MT. Effects of average and local structure on the dielectric behavior of (1-x)BaTiO3-xLaYO3 (0 ≤ x ≤ 0.40) ceramics. J Appl Phys 2010;108(1):14112.

[48]

Feteira A, Sinclair DC, Kreisel J. Average and local structure of (1-x)BaTiO3-xLaYO3 (0 ≤ x ≤ 0.50) ceramics. J Am Ceram Soc 2010;93(12):4174-81.

[49]

Shen ZB, Wang XH, Luo BC, Li LT. BaTiO3-BiYbO3 perovskite materials for energy storage applications. J Mater Chem 2015;3(35):18146-53.

Journal of Materiomics
Pages 295-301
Cite this article:
Jiang X, Hao H, Yang Y, et al. Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-doping. Journal of Materiomics, 2021, 7(2): 295-301. https://doi.org/10.1016/j.jmat.2020.09.001

24

Views

25

Crossref

N/A

Web of Science

36

Scopus

Altmetrics

Received: 29 July 2020
Revised: 24 August 2020
Accepted: 04 September 2020
Published: 09 September 2020
© 2020 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return