Highlights
● A flexible Nar1.4Co2O4 thermoeletric material was obtained by novel method.
● High thermoelectric performance was achieved in the flexible Na1.4Co2O4.
● The n-type NaxCo2O4 flexible thermoelectric material is first discovered.
● A flexible Nar1.4Co2O4 thermoeletric material was obtained by novel method.
● High thermoelectric performance was achieved in the flexible Na1.4Co2O4.
● The n-type NaxCo2O4 flexible thermoelectric material is first discovered.
Flexible thermoelectric materials are presented with potential applications in electronic devices and energy conversion due to their convenient preparation, good flexibility, and various forms. However, as ductility is rarely observed in inorganic semiconductors and ceramic insulators, reports on applications of inorganic oxide materials in flexible thermoelectric materials are sparse. Here, we report a new method for the synthesis of a flexible Na1.4Co2O4 thermoelectric material based on Na1.4Co2O4 bulk materials, which are prepared by a self-flux method and painted on print paper. Seebeck coefficient and power factor of the obtained thermoelectric material are 78–102 μVK-1 and 159–223 μWm−1K−2, respectively, in a temperature range of 303–522 K, which are superior to those values of other conductive polymers and their compounds. More interestingly, the n-type Na1.4Co2O4 flexible material is obtained in the painting process at higher pressure with Seebeck coefficients of −109 to −183 μVK−1 in a temperature range of 303–522 K. The convenient preparation method of these novel flexible thermoelectric materials may be expanded to the synthesis of other flexible thermoelectric materials, which will be the focus of future work.
Rama VE, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001;43(6856):597-602.
Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energ Environ Sci 2019;12(10):2983-90.
Wese JR, Muldawer L. Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys. J Phys Chem Solids 1960;15:13-6.
Ashida M, Sumida N, Hasezaki K, Matsunoshita H, Horita Z. Effects of low rotational speed on crystal orientation of Bi2Te3-based thermoelectric semiconductors deformed by high-pressure torsion. Mater Trans 2012;53(4):152-6.
Joseph P, Heremans Toberer V, Saramat ES, Kurosaki A, Charoenphakdee K, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008;321(5888):554-7.
Bed P, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008;320(5876):634-8.
Kong DY, Zhu W, Guo ZP, Deng Y. High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting. Energy 2019;175:292-9.
Li J, Sui J, Barreteau C, Berardan D, Dragoe N, Cai W, et al. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J Alloy Compd 2013;551(25):649-53.
Wang J, Li J, Yu H, Li J, Yang H, Yaer X, et al. Enhanced thermoelectric performance in n-type SrTiO3/SiGe composite. ACS Appl Mater Inter 2019;12(2):2687-94.
Fujita K, Mochida T, Nakamura K. High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn J Appl Phys 2001;40(7):4644-7.
Zhao LD, Berardan D, Pei YL, Byl C, Pinsard-Gaudart L, Dragoe N. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett 2010;97(9):921181-3.
Takahata K, Iguchi Y, Tanaka D, Itoh T. Low thermal conductivity of the layered oxide (Na,Ca)Co2O4: another example of a phone glass and an electron crystal. Phys Rev B 2000;61(19):12551-5.
Masset A, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B 2000;62(1):166-75.
Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 1997;56(20):12685-7.
Park J, Lee Y, Hong J, Ha M, Jung Y, Lim H, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014;8(12):12020-9.
Li L, Bai Y, Li L, Wang S, Zhang T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv Mater 2017;29(43):1702517-25.
Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017;13(25):1602790-9.
Tai Y, Lubineau G. Human-finger electronics based on opposing humidity-resistance responses in carbon nanofilms. Small 2017;13(11):486-90.
Singh DJ, Kasinathan D. Thermoelectric properties of NaxCoO2 and prospects for other oxide thermoelectrics. J Electron Mater 2007;36(7):736-9.
Wang L, Wang M, Zhao D. Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2 thermoelectric oxide by the citric acid complex method. J Alloy Compd 2008;471(1):519-23.
Ohtaki M, Maeda E. Microstructures and thermoelectric properties of NaCo2O4 prepared by double-step sintering. J Japan Soci Powd Meta 2000;47(11):1159-64.
Ono Y, Ishikawa R, Miyazaki Y, Ishii Y, Morii Y, Kajitani T. Crystal structure, electric and magnetic properties of layered cobaltite β-NaxCoO2. J Solid State Chem 2002;166(1):177-81.
Tajima S, Tani T, Isobe S, Koumoto K. Thermoelectric properties of highly textured NaCo2O4 ceramics processed by the reactive templated grain growth (RTGG) method. Mat Sci Eng B-Adv 2001;86(1):20-5.
Zang Y, Zhang F, Di C, Zhu DB, Gao X, Sirringhaus H, et al. Modulated thermoelectric properties of organic semiconductors using field-effect transistors. Adv Funct Mater 2015;25(20):3004-12.
Wang H, Chen Z, Jin Q. Crystal growth and transport properties of a- and y-ph NaxCoO2. Mater Lett 2005;59(29):3917-20.
Shin W, Norimitsu Murayama. Electronic structure of NaCo2O4. Mater Lett 2001;49(5):262-6.
Mikio I, Nagira T, Furumoto D, Katsuyama S, Nagai H. Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method. Scripta Mater 2003;48(4):403-8.
Wu Y, Wang J, Zhang B, Li Y, Miao L. Effect of microstructure on the electric properties of NaCo2O4 ceramics. J Synth Cryst 2015;44(9):2474-8.
Dupin JC, Gonbeau D, Benqlilou MH, Vinatier P, Levasseur A. XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation. Thin Solid Films 2001;384(1):23-32.
Xie X, Li Y, Liu ZQ, Haruta M, Shen W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009;458(7239):746-9.
Liu C, Long Z, Wang S, Li Z. The thermal aging research of polyimide paper—based materials. Mater Rep 2016;30(2):137-45.
Meng C, Liu C, Fan S. A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv Mater 2010;22(4):535-9.
Kim D, Kim Y, Choi K, Grunlan JC, Yu C. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 2010;4(1):513-23.
Kim GH, Hwang DH, Woo SI. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Phys Chem Chem Phys 2012;14(10):3530-6.
Hiroshige Y, Ookawa M, Toshima N. Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene. Synthetic Met 2007;157(10–12):467-74.
Wu Y, Wang J, Yaer X, Miao L, Zhang B, Guo F, et al. Effects of preferred orientation and crystal size on thermoelectric properties of sodium cobalt oxide. Funct Mater Lett 2016;9(1):160011-6.
Tajima S, Tani T, Isobe S, Koumoto K. Thermoelectric properties of highly textured NaCo2O4 ceramics processed by the reactive templated grain growth (RTGG) method. Mat Sci Eng B-Adv 2001;86(1):20-5.
Ono Y, Ishikawa R, Miyazaki Y, Ishii Y, Morii Y, Kajitani T. Crystal structure, electric and magnetic propertie layered cobaltite β-Na,CoO2. J Solid State Chem 2002;166(1):177-81.
Prabhakaran D, Boothroyd AT. Floating-zone growth of Na0.8−yAyCoO2 (A=Ca, Sr) single crystals. J Cryst Growth 2011;318(1):924-6.