Article Link
Collect
Submit Manuscript
Show Outline
Outline
Highlights
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Effective additive for enhancing the performance of Sb2S3 planar thin film solar cells

Hui ZhouaJian HanaXingyu PuaXuanhua Lia,b()
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, 710072, China
Northwestern Polytechnical University-Queen Marry, University of London (NPU-QMUL) Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), 127 West Youyi Road, Xi’an, Xi’an, 710072, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

• High quality Sb2S3 film has been obtained via additive engineering.

• The enhancement mechanisms have been systematically investigated.

• A high PCE of 5.84% has been achieved in additive-modified Sb2S3 solar cells.

Graphical Abstract

View original image Download original image

Abstract

Sb2S3 is a promising photovoltaic absorber with appropriate bandgap, excellent light absorption coefficient and great stability. However, the power conversion efficiency (PCE) of Sb2S3 planar thin film solar cells is unsatisfactory for further commercial application due to low crystallinity and high resistivity of Sb2S3 film. Here, we introduce an additive of 4-Chloro-3-nitrobenzenesulfonyl Chloride (CSCl) to alleviate these problems. The CSCl molecular contains two terminal Cl with lone pair electrons, which have the interaction with Sb atoms. Thus, the Sb2S3 film with enhanced crystallization and low trap states has been obtained and the resistivity is also decreased. Furthermore, CSCl additive raises the Fermi level of the Sb2S3 film, thereby enhancing the transport of electron from Sb2S3 to TiO2. Consequently, the optimal PCE of Sb2S3 solar cells is raised from 4.20% (control device) to 5.84%. Our research demonstrates a novel additive to enhance the photoelectric performance of Sb2S3 solar cells.

References

[1]

Cao Q, Li Z, Han J, Wang S, Zhu J, Tang H, Li X, Li X. Electron transport bilayer with cascade energy alignment for efficient perovskite solar cells. Solar RRL 2019;3(12):1900333.

[2]

Förster C, Heinze K. Photophysics and photochemistry with earth-abundant metals-fundamentals and concepts. Chem Soc Rev 2020;49(4):1057-70.

[3]

Ono LK, Liu S, Qi Y. Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew Chem Int Ed 2020;59(17):6676-98.

[4]

Li X, Guo S, Su J, Ren X, Fang Z. Efficient Raman enhancement in molybdenum disulfide by tuning the interlayer spacing. ACS Appl Mater Interfaces 2020;12(25):28474-83.

[5]

Wang B, Guo S, Xin X, Zhang Y, Wang Y, Li C, Song Y, Deng D, Li X, Sobrido AJ, Titirici M-M. Heat diffusion-induced gradient energy level in multishell bisulfides for highly efficient photocatalytic hydrogen production. Adv. Energy Mater. 2020;10(32):2001575.

[6]

Xin X, Song Y, Guo S, Zhang Y, Wang B, Yu J, Li X. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution. Appl Catal B Environ 2020;269:118773.

[7]

Guo S, Li Y, Tang S, Zhang Y, Li X, Sobrido AJ, Titirici M-M, Wei B. Monitoring hydrogen evolution reaction intermediates of transition metal dichalcogenides via operando Raman spectroscopy. Adv Funct Mater 2020;30(35):2003035.

[8]

Xin X, Song Y, Guo S, Zhang Y, Wang B, Wang Y, Li X. One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J Alloys Compd 2020;829:154635.

[9]

Carron R, Nishiwaki S, Feurer T, Hertwig R, Avancini E, Löckinger J, Yang S-C, Buecheler S, Tiwari AN. Advanced alkali treatments for high-efficiency Cu(in,Ga)Se2 solar cells on flexible substrates. Adv. Energy Mater. 2019;9(24):1900408.

[10]

Ramanujam J, Singh UP. Copper indium gallium selenide based solar cells. Energy Environ Sci 2017;10(6):1306-19.

[11]

Ramanujam J, Bishop DM, Todorov TK, Gunawan O, Rath J, Nekovei R, Artegiani E, Romeo A. Flexible CIGS, CdTe and a-Si:H based thin film solar cells: a review. Prog Mater Sci 2020;110:100619.

[12]

Bosio A, Pasini S, Romeo N. The history of photovoltaics with emphasis on CdTe solar cells and modules. Coatings 2020;10(4).

[13]

Metzger WK, Grover S, Lu D, Colegrove E, Moseley J, Perkins CL, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang CS, Kuciauskas D, Albin DS, Al-Jassim MM, Xiong G, Gloeckler M. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 2019;4(10):837-45.

[14]
Kamada R, Yagioka T, Adachi S, Handa A, Tai KF, Kato T, Sugimoto H. New world record Cu(in, Ga)(Se, S)2 thin film solar cell Efficiency beyond 22%. In: 2016 IEEE 43rd photovoltaic specialists conference (PVSC), 5-10 june 2016; 2016. p. 1287-91.
[15]

Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Ho-Baillie AWY. Solar cell efficiency tables (version 55). Prog Photovoltaics Res Appl 2020;28(1):3-15.

[16]

Chen C, Li K, Chen S, Wang L, Lu S, Liu Y, Li D, Song H, Tang J. Efficiency improvement of Sb2Se3 solar cells via grain boundary inversion. ACS Energy Lett. 2018;3(10):2335-41.

[17]

Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J. Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 2014;4(8):1301846.

[18]

Yang Z, Wang X, Chen Y, Zheng Z, Chen Z, Xu W, Liu W, Yang YM, Zhao J, Chen T, Zhu H. Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices. Nat Commun 2019;10(1). 4540-4540.

[19]

Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 2014;4(7):1301465.

[20]

Sinsermsuksakul P, Hartman K, Bok Kim S, Heo J, Sun L, Hejin Park H, Chakraborty R, Buonassisi T, Gordon RG. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett 2013;102(5):053901.

[21]

Kanai A, Toyonaga K, Chino K, Katagiri H, Araki H. Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%. Jpn J Appl Phys 2015;54(8S1):08KC06.

[22]

Lee SW, Lee YS, Heo J, Siah SC, Chua D, Brandt RE, Kim SB, Mailoa JP, Buonassisi T, Gordon RG. Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction. Adv. Energy Mater. 2014;4(11):1301916.

[23]

Yang B, Wang L, Han J, Zhou Y, Song H, Chen S, Zhong J, Lv L, Niu D, Tang J. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem Mater 2014;26(10):3135-43.

[24]

Yamada N, Maruya K, Yamaguchi Y, Cao X, Ninomiya Y. P- to n-type conversion and nonmetal–metal transition of lithium-inserted Cu3N films. Chem Mater 2015;27(23):8076-83.

[25]

Luo L, Luan W, Yuan B, Zhang C, Jin L. High efficient and stable solid solar cell: based on FeS2 nanocrystals and P3HT: PCBM. Energy Procedia 2015;75:2181-6.

[26]

Ge J, Koirala P, Grice CR, Roland PJ, Yu Y, Tan X, Ellingson RJ, Collins RW, Yan Y. Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells. Adv. Energy Mater. 2017;7(6):1601803.

[27]

Wang X, Li J, Liu W, Yang S, Zhu C, Chen T. A fast chemical approach towards Sb2S3 film with a large grain size for high-performance planar heterojunction solar cells. Nanoscale 2017;9(10):3386-90.

[28]

Ghosh C, Varma BP. Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films 1979;60(1):61-5.

[29]

Versavel MY, Haber JA. Structural and optical properties of amorphous and crystalline antimony sulfide thin-films. Thin Solid Films 2007;515(18):7171-6.

[30]

Boix PP, Lee YH, Fabregat-Santiago F, Im SH, Mora-Sero I, Bisquert J, Seok SI. From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 2012;6(1):873-80.

[31]

Lee YH, Heo JH, Im SH, Kim H-j, Lim C-S, Ahn TK, Seok SI. Improvement of nonlinear response for the power conversion efficiency with light intensities in cobalt complex electrolyte system. Chem Phys Lett 2013;573:63-9.

[32]

Kondrotas R, Chen C, Tang J. Sb2S3 solar cells. Joule 2018;2(5):857-78.

[33]

Gao B, Cao Q, Pu X, Yang J, Han J, Wang S, Li T, He Z, Li X. Bi-directional functionalization of urea-complexed SnO2 for efficient planar perovskite solar cells. Appl Surf Sci 2020:148711.

[34]

Li T, Wang S, Yang J, Pu X, Gao B, He Z, Cao Q, Han J, Li X. Multiple functional groups synergistically improve the performance of inverted planar perovskite solar cells. Nano Energy 2021;82:105742.

[35]

Yang J, Cao Q, He Z, Pu X, Li T, Gao B, Li X. The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nano Energy 2021;82:105731.

[36]

Wang S, He Z, Yang J, Li T, Pu X, Han J, et al. Tailoring the mercaptan ligands for high performance inverted perovskite solar cells with efficiency exceeding 21%. J. Energy Chem. 2021;60:169-77.

[37]

Han J, Pu X, Zhou H, Cao Q, Wang S, He Z, Gao B, Li T, Zhao J, Li X. Synergistic effect through the introduction of inorganic zinc halides at the interface of TiO2 and Sb2S3 for high-performance Sb2S3 planar thin-film solar cells. ACS Appl Mater Interfaces 2020;12(39):44297-306.

[38]

Wang X, Tang R, Wu C, Zhu C, Chen T. Development of antimony sulfide–selenide Sb2(S,Se)3-Based solar cells. J. Energy Chem. 2018;27(3):713-21.

[39]

Itzhaik Y, Niitsoo O, Page M, Hodes G. Sb2S3-Sensitized nanoporous TiO2 solar cells. J Phys Chem C 2009;113(11):4254-6.

[40]

Yuan S, Deng H, Dong D, Yang X, Qiao K, Hu C, Song H, Song H, He Z, Tang J. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth. Sol Energy Mater Sol Cell 2016;157:887-93.

[41]

Wang Q, Chen Z, Wang J, Xu Y, Wei Y, Wei Y, Qiu L, Lu H, Ding Y, Zhu J. Sb2S3 solar cells: functional layer preparation and device performance. Inorganic Chem. Front. 2019;6(12):3381-97.

[42]

Lei H, Chen J, Tan Z, Fang G. Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar RRL 2019;3(6):1900026.

[43]

Ishaq M, Deng H, Farooq U, Zhang H, Yang X, Shah UA, Song H. Efficient copper-doped antimony sulfide thin-film solar cells via coevaporation method. Solar RRL 2019;3(12):1900305.

[44]

Tang R, Wang X, Jiang C, Li S, Liu W, Ju H, Yang S, Zhu C, Chen T. N-type doping of Sb2S3 light-harvesting films enabling high-efficiency planar heterojunction solar cells. ACS Appl Mater Interfaces 2018;10(36):30314-21.

[45]

Jiang C, Tang R, Wang X, Ju H, Chen G, Chen T. Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells. Solar RRL 2019;3(1):1800272.

[46]

Guo C, Chen J, Li G, Liang X, Lai W, Yang L, Mai Y, Li Z. Enhanced electrical conductivity of Sb2S3 thin film via C60 modification and improvement in solar cell efficiency. Global Challenges 2019;3(7):1800108.

[47]

Ito S, Tsujimoto K, Nguyen D-C, Manabe K, Nishino H. Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int J Hydrogen Energy 2013;38:16749-54.

[48]

Shaji S, Garcia LV, Loredo SL, Krishnan B, Aguilar Martinez JA, Das Roy TK, Avellaneda DA. Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl Surf Sci 2017;393:369-76.

[49]

Minceva-Sukarova B, Jovanovski G, Makreski P, Soptrajanov B, Griffith W, Willis R, Grzetic I. Vibrational spectra of MM S2 type synthetic minerals (M=Tl or Ag and M=As or Sb). J Mol Struct 2003;651–653:181-9.

[50]

Zheng H, Pan W, Shen W. One-step synthesis of colloidal CH3NH3PbBr3 nanoplatelets via chlorobenzene to realize nonsolvent crystallization. Nanotechnology 2018;29(45):455601.

[51]

Galván JE, Defonsi Lestard ME, Tuttolomondo ME, Ben Altabef A. Experimental and quantum chemical studies on the molecular structure of 3,3,3-trifluoropropane-1-sulfonyl Chloride: CF3CH2CH2SO2Cl. J Mol Struct 2017;1127:377-85.

[52]

Fernández LE, Varetti EL. A scaled quantum mechanical force field for the sulfuryl halides: I. The symmetric halides SO2X2 (X=F, Cl, Br). Spectrochim Acta Mol Biomol Spectrosc 2005;62(1):221-5.

[53]

Li J, Wang N, Bi F, Chen S, Zhao C, Liu L, Yao Q, Huang C, Xue Y, Liu H, Jiu T. Inverted MAPbI3 perovskite solar cells with graphdiyne derivative-incorporated electron transport layers exceeding 20% efficiency. Solar RRL 2019;3(10):1900241.

[54]

Han J, Wang S, Yang J, Guo S, Cao Q, Tang H, Pu X, Gao B, Li X. Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer. ACS Appl Mater Interfaces 2020;12(4):4970-9.

[55]

He J, Liu J, Hou Y, Wang Y, Yang S, Yang HG. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nat Commun 2020;11(1):4237.

[56]

Salinas-Estevané P, Sánchez EM. Preparation of Sb2S3 nanostructures by the [BMIM][BF4] ionic liquid assisted low power sonochemical method. Mater Lett 2010;64(23):2627-30.

[57]

Zakaznova-Herzog VP, Harmer SL, Nesbitt HW, Bancroft GM, Flemming R, Pratt AR. High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): structural contributions and surface reconstruction. Surf Sci 2006;600(2):348-56.

[58]

Xiao K, Xu QZ, Ye KH, Liu ZQ, Fu LM, Li N, Chen YB, Su YZ. Facile hydrothermal synthesis of Sb2S3 nanorods and their magnetic and electrochemical properties. ECS Solid State Lett. 2013;2(6):P51-4.

[59]

Lee J-W, Park N-G. Chemical approaches for stabilizing perovskite solar cells. Adv. Energy Mater. 2020;10(1):1903249.

[60]

Lee J-W, Kim H-S, Park N-G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc Chem Res 2016;49(2):311-9.

[61]

Bi D, Yi C, Luo J, Décoppet J-D, Zhang F, Zakeeruddin Shaik M, Li X, Hagfeldt A, Grätzel M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016;1(10):16142.

[62]

Gao P, Grätzel M, Nazeeruddin MK. Organohalide lead perovskites for photovoltaic applications. Energy Environ Sci 2014;7(8):2448-63.

[63]

Akkerman QA, Gandini M, Di Stasio F, Rastogi P, Palazon F, Bertoni G, Ball JM, Prato M, Petrozza A, Manna L. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2016;2(2):16194.

[64]

Han Y, Zhao H, Duan C, Yang S, Yang Z, Liu Z, Liu S. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater 2020;30(12):1909972.

[65]

Zhu L, Shao Z, Ye J, Zhang X, Pan X, Dai S. Mesoporous BaSnO3 layer based perovskite solar cells. Chem Commun 2016;52(5):970-3.

[66]

Lenes M, Morana M, Brabec CJ, Blom PWM. Recombination-limited photocurrents in low bandgap polymer/fullerene solar cells. Adv Funct Mater 2009;19(7):1106-11.

[67]

Zhao D, Ke W, Grice CR, Cimaroli AJ, Tan X, Yang M, Collins RW, Zhang H, Zhu K, Yan Y. Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy 2016;19:88-97.

[68]

Chen H, Fu W, Huang C, Zhang Z, Li S, Ding F, Shi M, Li C-Z, Jen AKY, Chen H. Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells. Adv. Energy Mater. 2017;7(18):1700012.

[69]

Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015;347(6225):967.

[70]

Bube RH. Trap density determination by space-charge-limited currents. J Appl Phys 1962;33(5):1733-7.

[71]

Chen Q, Chen L, Ye F, Zhao T, Tang F, Rajagopal A, Jiang Z, Jiang S, Jen AKY, Xie Y, Cai J, Chen L. Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells. Nano Lett 2017;17(5):3231-7.

[72]

Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B. Revealing underlying processes involved in light soaking effects and hysteresis phenomena in perovskite solar cells. Adv. Energy Mater. 2015;5(14):1500279.

[73]

Li X, Tong T, Wu Q, Guo S, Song Q, Han J, Huang Z. Unique seamlessly bonded CNT@graphene hybrid nanostructure introduced in an interlayer for efficient and stable perovskite solar cells. Adv Funct Mater 2018;28(32):1800475.

[74]

Wang S, Li Z, Zhang Y, Liu X, Han J, Li X, Liu Z, Liu S, Choy WCH. Water-soluble triazolium ionic-liquid-induced surface self-assembly to enhance the stability and efficiency of perovskite solar cells. Adv Funct Mater 2019;29(15):1900417.

Journal of Materiomics
Pages 1074-1082
Cite this article:
Zhou H, Han J, Pu X, et al. Effective additive for enhancing the performance of Sb2S3 planar thin film solar cells. Journal of Materiomics, 2021, 7(5): 1074-1082. https://doi.org/10.1016/j.jmat.2021.02.001
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return