Article Link
Collect
Submit Manuscript
Show Outline
Outline
Highlights
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Surface modification with ionic liquid for efficient CsPbI2Br perovskite solar cells

Xingyu PuaJian HanaShuangjie WangaHui ZhouaQi CaoaJiabao YangaZiwei HeaXuanhua Lia,b()
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xián, 710072, China
Northwestern Polytechnical University-Queen Marry, University of London (NPU-QMUL) Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Xián, 710072, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Highlights

• The ionic liquid ([PEVIM]Cl) is synthesized to modify the CsPbI2Br surface.

• The mechanisms of improved device performance have been revealed.

• High performance with power conversion efficiency of 14.19% is obtained.

• The unencapsulated device exhibits both enhanced thermal and humidity stability.

Graphical Abstract

View original image Download original image

Abstract

The presence of numerous trap states on the perovskite surface severely affects the performance of inorganic CsPbI2Br perovskite solar cells. Surface modification has been proven to be an effective strategy to passivate the surface trap states of CsPbI2Br perovskite. However, most modifiers behave high volatility and insulation, not enough to further develop the CsPbI2Br solar cells. Herein, an ionic liquid of 1-viny-3-propionate ethyl imidazolium chloride ([PEVIM]Cl) is applied to modify the CsPbI2Br film surface, yielding a compact film with enhanced crystallinity. The surface trap states of CsPbI2Br film are effectively passivated via the interaction between carbonyl group of [PEVIM]Cl and uncoordinated metal cations of CsPbI2Br perovskite, leading to charge recombination suppression and charge transport enhancement. Consequently, the power conversion efficiency (PCE) of [PEVIM]Cl modified CsPbI2Br device is obviously enhanced from 12.49% to 14.19% with an improved open-circuit voltage of 1.160 V. Moreover, the non-encapsulated device presents excellent thermal stability, still maintaining 91% PCE when heated at 85 °C in nitrogen atmosphere for 360 h. Meanwhile, the non-encapsulated device degrades only 11% PCE after stored at 50% relative humidity for 960 h. This simple and efficient approach provides a promising direction to fabricate high-efficiency and stable inorganic perovskite devices.

References

[1]

Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science 2014;345:542-6. https://doi.org/10.1126/science.1254050.

[2]

Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013;342:344-7. https://doi.org/10.1126/science.1243167.

[3]

Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015;347:522-5. https://doi.org/10.1126/science.aaa0472.

[4]

Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013;342:341-4. https://doi.org/10.1126/science.1243982.

[5]

Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015;347:967-70. https://doi.org/10.1126/science.aaa5760.

[6]

Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science 2018;361:8235. https://doi.org/10.1126/science.aat8235.

[7]

Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 2009;131:6050-1. https://doi.org/10.1021/ja809598r.

[8]
Best research-cell efficiencies can be found under. 2020. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200128.pdf.
[9]

Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability. Adv Funct Mater 2019;29:1808843. https://doi.org/10.1002/adfm.201808843.

[10]

Berhe T, Su W-N, Chen C-H, et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 2015;9:323-56. https://doi.org/10.1039/C5EE02733K.

[11]

Song Z, Abate A, Watthage SC, et al. Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv Energy Mater 2016;6:1600846. https://doi.org/10.1002/aenm.201600846.

[12]

Wang S, Yang B, Han J, et al. Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ Sci 2020;13:5068-79. https://doi.org/10.1039/D0EE02043E.

[13]

Lee J-W, Kim D-H, Kim H-S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater 2015;5:1501310. https://doi.org/10.1002/aenm.201501310.

[14]

Zhou W, Zhao Y, Zhou X, et al. Light-independent ionic transport in inorganic perovskite and ultra-stable Cs-based perovskite solar cells. J Phys Chem Lett 2017;8:4122-8. https://doi.org/10.1021/acs.jpclett.7b01851.

[15]

Service RF. Cesium fortifies next-generation solar cells. Science 2016;351:113-4. https://doi.org/10.1126/science.351.6269.113.

[16]

Sutton RJ, Eperon GE, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater 2016;6:1502458. https://doi.org/10.1002/aenm.201502458.

[17]

Ma T, Wang S, Zhang Y, et al. The development of all-inorganic CsPbX3 perovskite solar cells. J Mater Sci 2020;55:464-79. https://doi.org/10.1007/s10853-019-03974-y.

[18]

Ho-Baillie A, Zhang M, Lau CFJ, et al. Untapped potentials of inorganic metal halide perovskite solar cells. Joule 2019;3:938-55. https://doi.org/10.1016/j.joule.2019.02.002.

[19]

Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 2019;3:191-204. https://doi.org/10.1016/j.joule.2018.10.011.

[20]

Wang X, Ran X, Liu X, et al. Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic. Angew Chem Int Ed 2020;59:13354-61. https://doi.org/10.1002/anie.202004256.

[21]

Shen EC, Chen JD, Tian Y, et al. Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells. Adv Sci 2019;7:1901952. https://doi.org/10.1002/advs.201901952.

[22]

Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater 2020;30:1909972. https://doi.org/10.1002/adfm.201909972.

[23]

Chen C-Y, Lin H-Y, Chiang K-M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Adv Mater 2017;29:1605290. https://doi.org/10.1002/adma.201605290.

[24]

Lau CFJ, Deng X, Ma Q, et al. CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett 2016;1:573-7. https://doi.org/10.1021/acsenergylett.6b00341.

[25]

Tian J, Xue Q, Yao Q, et al. Inorganic halide perovskite solar cells: progress and challenges. Adv Energy Mater 2020;10:2000183. https://doi.org/10.1002/aenm.202000183.

[26]

Lin HY, Chen CY, Hsu BW, et al. Efficient cesium lead halide perovskite solar cells through alternative thousand-layer rapid deposition. Adv Funct Mater 2019;29:1905163. https://doi.org/10.1002/adfm.201905163.

[27]

Peng J, Wu Y, Ye W, et al. Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ Sci 2017;10:1792-800. https://doi.org/10.1039/C7EE01096F.

[28]

Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017;355:722-6. https://doi.org/10.1126/science.aai9081.

[29]

Liu L, McLeod JA, Wang R, et al. Tracking the formation of methylammonium lead triiodide perovskite. Appl Phys Lett 2015;107:061904. https://doi.org/10.1063/1.4928662.

[30]

Yang J, Cao Q, He Z, et al. The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%. Nanomater Energy 2021;82:105731. https://doi.org/10.1016/j.nanoen.2020.105731.

[31]

Fu S, Zhang W, Li X, et al. Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells. ACS Energy Lett 2020;5:676-84. https://doi.org/10.1021/acsenergylett.9b02716.

[32]

Wang S, He Z, Yang J, et al. Tailoring the mercaptan ligands for high performance inverted perovskite solar cells with efficiency exceeding 21%. J Energy Chem 2021. https://doi.org/10.1016/j.jechem.2020.12.035.

[33]

Bai D, Zhang J, Jin Z, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett 2018;3:970-8. https://doi.org/10.1021/acsenergylett.8b00270.

[34]

Sun H, Zhang J, Gan X, et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv Energy Mater 2019;9:1900896. https://doi.org/10.1002/aenm.201900896.

[35]

Lau CFJ, Zhang M, Deng X, et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett 2017;2:2319-25. https://doi.org/10.1021/acsenergylett.7b00751.

[36]

Zeng Z, Zhang J, Gan X, et al. In situ grain boundary functionalization for stable and efficient inorganic CsPbI2Br perovskite solar cells. Adv Energy Mater 2018;8:1801050. https://doi.org/10.1002/aenm.201801050.

[37]

Xue J, Wang R, Wang K-L, et al. Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J Am Chem Soc 2019;141:13948-53. https://doi.org/10.1021/jacs.9b06940.

[38]

Wang B, Guo S, Xin X, et al. Heat diffusion-induced gradient energy level in multishell bisulfides for highly efficient photocatalytic hydrogen production. Adv Energy Mater 2020;10:2001575. https://doi.org/10.1002/aenm.202001575.

[39]

Guo S, Li Y, Tang S, et al. Monitoring hydrogen evolution reaction intermediates of transition metal dichalcogenides via operando Raman spectroscopy. Adv Funct Mater 2020;30:2003035. https://doi.org/10.1002/adfm.202003035.

[40]

Yuan J, Zhang L, Bi C, et al. Surface trap states passivation for high-performance inorganic perovskite solar cells. Sol RRL 2018;2:1800188. https://doi.org/10.1002/solr.201800188.

[41]

Zhang J, Jin Z, Liang L, et al. Iodine-optimized interface for inorganic CsPbI2Br perovskite solar cell to attain high stabilized efficiency exceeding 14%. Adv Sci 2018;5:1801123. https://doi.org/10.1002/advs.201801123.

[42]

Chen S, Wang D, Zheng Q. Surface passivation of all-inorganic CsPbI2Br with a fluorinated organic ammonium salt for perovskite solar cells with efficiencies over 16%. Sol RRL 2020:2000321. https://doi.org/10.1002/solr.202000321.

[43]

Tian J, Xue Q, Tang X, et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv Mater 2019;31:1901152. https://doi.org/10.1002/adma.201901152.

[44]

Han J, Wang S, Yang J, et al. Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer. ACS Appl Mater Interfaces 2020;12:4970-9. https://doi.org/10.1021/acsami.9b15148.

[45]

Gao B, Cao Q, Pu X, et al. Bi-directional functionalization of urea-complexed SnO2 for efficient planar perovskite solar cells. Appl Surf Sci 2020:148711. https://doi.org/10.1016/j.apsusc.2020.148711.

[46]

Li B, Zhang Y, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun 2018;9:1076. https://doi.org/10.1038/s41467-018-03169-0.

[47]

Yin G, Zhao H, Jiang H, et al. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency. Adv Funct Mater 2018;28:1803269. https://doi.org/10.1002/adfm.201803269.

[48]

Chen L, Wan L, Li X, et al. Inverted all-inorganic CsPbI2Br perovskite solar cells with promoted efficiency and stability by nickel incorporation. Chem Mater 2019;31:9032-9. https://doi.org/10.1021/acs.chemmater.9b03277.

[49]

Huang X, Guo H, Wang K, et al. Ionic liquid induced surface trap-state passivation for efficient perovskite hybrid solar cells. Org Electron 2017;41:42-8. https://doi.org/10.1016/j.orgel.2016.11.031.

[50]

Wang Z, Baranwal AK, Akmal kamarudin M, et al. Delocalized molecule surface electronic modification for enhanced performance and high environmental stability of CsPbI2Br perovskite solar cells. Nanomater Energy 2019;66:104180. https://doi.org/10.1016/j.nanoen.2019.104180.

[51]

Dong C, Han X, Li W, et al. Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell. Nanomater Energy 2019;59:553-9. https://doi.org/10.1016/j.nanoen.2019.02.075.

[52]

Bai S, Da P, Li C, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019;571:245-50. https://doi.org/10.1038/s41586-019-1357-2.

[53]

Xia R, Fei Z, Drigo N, et al. Retarding thermal degradation in hybrid perovskites by ionic liquid additives. Adv Funct Mater 2019;29:1902021. https://doi.org/10.1002/adfm.201902021.

[54]

Xie F, Chen C-C, Wu Y, et al. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ Sci 2017;10:1942-9. https://doi.org/10.1039/C7EE01675A.

[55]

Bube RH. Trap density determination by space-charge-limited currents. J Appl Phys 1962;33:1733-7. https://doi.org/10.1063/1.1728818.

[56]

Li T, Wang S, Yang J, et al. Multiple functional groups synergistically improve the performance of inverted planar perovskite solar cells. Nanomater Energy 2021;82:105742. https://doi.org/10.1016/j.nanoen.2021.105742.

[57]

Patil JV, Mali SS, Hong CK. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency. Sol RRL 2020;4:2000164. https://doi.org/10.1002/solr.202000164.

[58]

Xin X, Song Y, Guo S, et al. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution. Appl Catal B Environ 2020;269:118773. https://doi.org/10.1016/j.apcatb.2020.118773.

[59]

Li X, Guo S, Su J, et al. Efficient Raman enhancement in molybdenum disulfide by tuning the interlayer spacing. ACS Appl Mater Interfaces 2020;12:28474-83. https://doi.org/10.1021/acsami.0c04151.

Journal of Materiomics
Pages 1039-1048
Cite this article:
Pu X, Han J, Wang S, et al. Surface modification with ionic liquid for efficient CsPbI2Br perovskite solar cells. Journal of Materiomics, 2021, 7(5): 1039-1048. https://doi.org/10.1016/j.jmat.2021.02.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return