AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics

Jincheng Qina,bZhifu Liua( )Mingsheng MaaYongxiang Lia( )
CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
Center of Materials Sciences and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

· A permittivity prediction model for MWDCs was first established via machine learning based on measured permittivity.

Abstract

Low permittivity microwave dielectric ceramics (MWDCs) are attracting great interest because of their promising applications in the new era of 5G and IoT. Although theoretical rules and computational methods are of practical use for permittivity prediction, unsatisfactory predictability and universality impede rational design of new high-performance materials. In this work, based on a dataset of 254 single-phase microwave dielectric ceramics (MWDCs), machine learning (ML) methods established a high accuracy model for permittivity prediction and gave insights of quantitative chemistry/structure-property relationships. We employed five commonly-used algorithms, and introduced 32 intrinsic chemical, structural and thermodynamic features which have correlations with permittivity for modeling. Machine learning results help identify the permittivity decisive factors, including polarizability per unit volume, average bond length, and average cell volume per atom. The feature-property relationships were discussed. The optimal model constructed by support vector regression with radial basis function kernel was validated its superior predictability and generalization by verification dataset. Low permittivity material systems were screened from a dataset of ~3300 materials without reported microwave permittivity by high-throughput prediction using optimal model. Several predicted low permittivity ceramics were synthesized, and the experimental results agree well with ML prediction, which confirmed the reliability of the prediction model.

References

[1]

Sebastian MT, Ubic R, Jantunen H. Low-loss dielectric ceramic materials and their properties. Int Mater Rev 2015;60(7): 392-412.

[2]

Ohsato H, Tsunooka T, Kan A, Ohishi Y, Miyauchi Y, Tohdo Y, Okawa T, Kakimoto K, Ogawa H. Microwave-millimeterwave dielectric materials. Key Eng Mater 2004;269: 195-8.

[3]

Reaney I, Iddles D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 2006;89(7): 2063-72.

[4]

Zhou D, Pang L-X, Wang D-W, Li C, Jin B-B, Reaney IM. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J Mater Chem C 2017;5(38): 10094-8.

[5]

Ohsato H, Tsunooka T, Sugiyama T, Kakimoto K-i, Ogawa H. Forsterite ceramics for millimeterwave dielectrics. J Electroceram 2006;17(2–4): 445-50.

[6]

Ohsato H, Varghese J, Vahera T, Kim JS, Sebastian MT, Jantunen H, Iwata M. Micro/Millimeter-wave dielectric indialite/cordierite glass-ceramics applied as LTCC and direct casting substrates: current status and prospects. J Korean Ceram Soc 2019;56(6): 526-33.

[7]

Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Czerwińska E, Pałka N, Bajurko PR. Low temperature sintering of Zn4B6O13 based substrates, their microstructure and dielectric properties up to the THz range. J Alloys Compd 2020;819: 153025.

[8]

Onsager L. Electric moments of molecules in liquids. J Am Chem Soc 1936;58(8): 1486-93.

[9]

Kirkwood JG. On the theory of dielectric polarization. J Chem Phys 1936;4(9): 592-601.

[10]

Fröhlich H. General theory of the static dielectric constant. Trans Faraday Soc 1948;44: 238-43.

[11]

Penn DR. Wave-number-dependent dielectric function of semiconductors. Phys Rev 1962;128(5): 2093-7.

[12]

Ravindra NM, Auluck S, Srivastava VK. On the penn gap in semiconductors. Phys Status Solidi B 1979;93(2): K155-60.

[13]

Gladstone JH, Dale TP. XIV. Researches on the refraction, dispersion, and sensitiveness of liquids. Phil Trans Roy Soc Lond 1863;153: 317-43.

[14]

Wu Z, Zhang S. Semiempirical method for the evaluation of bond covalency in complex crystals. J Phys Chem A 1999;103(21): 4270-4.

[15]

Yang H, Zhang S, Yang H, Yuan Y, Li E. Intrinsic dielectric properties of columbite ZnNb2O6 ceramics studied by P-V-L bond theory and Infrared spectroscopy. J Am Ceram Soc 2019;102(9): 5365-74.

[16]

Liu D, Zhang S, Wu Z. Lattice energy estimation for inorganic ionic crystals. Inorg Chem 2003;42(7): 2465-9.

[17]

Fan X, Chen X, Liu X. Structural dependence of microwave dielectric properties of SrRAlO4 (R= Sm, Nd, La) ceramics: crystal structure refinement and infrared reflectivity study. Chem Mater 2008;20(12): 4092-8.

[18]

Lufaso MW. Crystal structures, modeling, and dielectric property relationships of 2: 1 ordered Ba3MM‘2O9 (M = Mg, Ni, Zn; M‘ = Nb, Ta) perovskites. Chem Mater 2004;16(11): 2148-56.

[19]

Wu S, Song K, Liu P, Lin H, Zhang F, Zheng P, Qin H, Alford N. Effect of TiO2 doping on the structure and microwave dielectric properties of cordierite ceramics. J Am Ceram Soc 2015;98(6): 1842-7.

[20]

Kim ES, Chun BS, Freer R, Cernik RJ. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J Eur Ceram Soc 2010;30(7): 1731-6.

[21]

Takahashi H, Baba Y, Ezaki K, Okamoto Y, Nakano S. Dielectric characteristics of (A1/21+●A1/23+)TiO3 ceramics at microwave frequencies. Jpn J Appl Phys 1991;30(9B): 2339-42.

[22]

Abdul Khalam L, Sreemoolanathan H, Ratheesh R, Mohanan P, Sebastian MT. Preparation, characterization and microwave dielectric properties of Ba(B′1/2Nb1/2)O3 [B′ = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb and In] ceramics. Mater Sci Eng B 2004;107(3): 264-70.

[23]

Guo J, Zhou D, Li Y, Shao T, Qi ZM, Jin BB, Wang H. Structure-property relationships of novel microwave dielectric ceramics with low sintering temperatures: (Na0.5xBi0.5xCa1-x)MoO4. Dalton Trans 2014;43(31): 11888-96.

[24]

Kamba S, Samoukhina P, Kadlec F, Pokorný J, Petzelt J, Reaney IM, Wise PL. Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series. J Eur Ceram Soc 2003;23(14): 2639-45.

[25]

Levine BF. Bond susceptibilities and ionicities in complex crystal structures. J Chem Phys 1973;59(3): 1463-86.

[26]

Song XQ, Xie MQ, Du K, Lu WZ, Lei W. Synthesis, crystal structure and microwave dielectric properties of self-temperature stable Ba1-xSrxCuSi2O6 ceramics for millimeter-wave communication. J. Materiomics 2019;5(4): 606-17.

[27]

Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. Apl Mater 2016;4(5): 053208.

[28]

Lookman T, Balachandran PV, Xue D, Yuan R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput Mater 2019;5(1).

[29]

Liu Y, Zhao T, Ju W, Shi S. Materials discovery and design using machine learning. J. Materiomics 2017;3(3): 159-77.

[30]

Rajan K. Materials informatics: the materials “gene” and big data. Annu Rev Mater Res 2015;45(1): 153-69.

[31]

Kim C, Pilania G, Ramprasad R. Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J Phys Chem C 2016;120(27): 14575-80.

[32]

Kim C, Pilania G, Ramprasad R. From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater 2016;28(5): 1304-11.

[33]

Sun YT, Bai HY, Li MZ, Wang WH. Machine learning approach for prediction and understanding of glass-forming ability. J Phys Chem Lett 2017;8(14): 3434-9.

[34]

Weng B, Song Z, Zhu R, Yan Q, Sun Q, Grice CG, Yan Y, Yin WJ. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nat Commun 2020;11(1): 3513.

[35]

Xue D, Balachandran PV, Yuan R, Hu T, Qian X, Dougherty ER, Lookman T. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. Proc Natl Acad Sci USA 2016;113(47): 13301-6.

[36]

Raccuglia P, Elbert KC, Adler PD, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ. Machine-learning-assisted materials discovery using failed experiments. Nature 2016;533(7601): 73-6.

[37]

Kim E, Huang K, Jegelka S, Olivetti E. Virtual screening of inorganic materials synthesis parameters with deep learning. npj Comput Mater 2017;3(1): 1-9.

[38]

Umeda Y, Hayashi H, Moriwake H, Tanaka I. Materials informatics for dielectric materials. Jpn J Appl Phys 2018;57(11S): 11UB01.

[39]

Umeda Y, Hayashi H, Moriwake H, Tanaka I. Prediction of dielectric constants using a combination of first principles calculations and machine learning. Jpn J Appl Phys 2019;58(SL): SLLC01.

[40]

Noda Y, Otake M, Nakayama M. Descriptors for dielectric constants of perovskite-type oxides by materials informatics with first-principles density functional theory. Sci Technol Adv Mater 2020;21(1): 92-9.

[41]

Morita K, Davies DW, Butler KT, Walsh A. Modeling the dielectric constants of crystals using machine learning. J Chem Phys 2020;153(2): 024503.

[42]

Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. The Materials Project: a materials genome approach to accelerating materials innovation. Apl Mater 2013;1(1): 011002.

[43]

Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 1993;73(1): 348-66.

[44]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 2011;44(6): 1272-6.

[45]

Park HS, Yoon KH, Kim ES. Effect of bond valence on microwave dielectric properties of complex perovskite ceramics. Mater Chem Phys 2003;79: 181-3.

[46]

Cho YS, Yoon KH, Lee BD, Lee HR, Kim ES. Understanding microwave dielectric properties of Pb-based complex perovskite ceramics via bond valence. Ceram Int 2004;30(8): 2247-50.

[47]

Valant M, Suvorov D, Rawn C. Intrinsic reasons for variations in dielectric properties of Ba6-3xR8+2xTi18O54 (R = LA-Gd) solid solutions. Jpn J Appl Phys 1999;38(5A): 2820-6.

[48]

Colla EL, David N, Rau C, Setter N. Prediction of the dielectric properties of non-ferroelectric complex perovskites and of the ternary system Ba/SrO-Ln2O3-xTiO2 for microwave applications. Ferroelectrics 1996;184(1): 151-60.

[49]

Diao C, Shi F. Correlation among dielectric properties, vibrational modes, and crystal structures in Ba[SnxZn(1–x)/3Nb2(1–x)/3]O3 solid solutions. ACS Sustainable Chem Eng 2012;116(12): 6852-8.

[50]

Kwon D-K, Lanagan MT, Shrout TR. Microwave dielectric properties and low-temperature cofiring of BaTe4O9 with aluminum metal electrode. J Am Ceram Soc 2005;88(12): 3419-22.

[51]

Phillips JC. Dielectric definition of electronegativity. Phys Rev Lett 1968;20(11): 550-3.

[52]

Simpson J, Clair A St. Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films 1997;308–309: 480-5.

[53]

Timothy ML, Timothy MS. Molecular design of free volume as a route to low-κ dielectric materials. J Am Chem Soc 2003;125(46): 14113-9.

[54]

Sebastian MT, Wang H, Jantunen H. Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr Opin Solid State Mater Sci 2016;20(3): 151-70.

[55]
Ohsato H. Millimeter-wave materials. In: Sebastian M, Jantunen H, Ubic R, editors. Microwave materials and applications. Chichester, UK: John Wiley &Sons; 2017. p. 203-91.
[56]

Song X-Q, Du K, Li J, Lan X-K, Lu W-Z, Wang X-H, Lei W. Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram Int 2019;45(1):279-86.

[57]

Xie C, Oganov AR, Dong D, Liu N, Li D, Debela TT. Rational design of inorganic dielectric materials with expected permittivity. Sci Rep 2015;5:16769.

Journal of Materiomics
Pages 1284-1293
Cite this article:
Qin J, Liu Z, Ma M, et al. Machine learning approaches for permittivity prediction and rational design of microwave dielectric ceramics. Journal of Materiomics, 2021, 7(6): 1284-1293. https://doi.org/10.1016/j.jmat.2021.02.012

213

Views

29

Crossref

29

Web of Science

35

Scopus

Altmetrics

Received: 24 December 2020
Revised: 15 February 2021
Accepted: 17 February 2021
Published: 04 March 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return