Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochromic devices (ECDs) can regulate the indoor solar radiation by adjusting optical transmissive properties, showing great commercial potential and important social value of green energy saving. However, the unsafety and high cost of Li+ based electrolyte hinder the large-scale and industrialized production of ECDs. Other metal ions have been used as electrolyte ions, but they are rarely reported in all solid state ECDs. In this study, MgF2 film is used as the solid electrolyte to construct all solid state ECD with the structure of glass/ITO/WO3/MgF2/NiO/ITO. The ECD shows the large optical modulation (~83% at 820 nm, with 100 s durations) and fast response (19.2 s for bleaching and 8.3 s for coloring, with 25 s durations). Moreover, the ECD achieves the extreme transmittance value of colored states Tc ≈ 0%, which can give an absolute private state. This work not only indicates that MgF2 film can be an alternative to Li+ based electrolyte in all solid state ECDs, but also broadens the applications of all solid state EC smart windows to private buildings.
Korgel B. Composite for smarter windows. Nature 2013;500:278–9. https://doi.org/10.1038/500278a.
Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information. Energy Build 2008;40(3):394–8. https://doi.org/10.1016/j.enbuild.2007.03.007.
Baetens R, Jelle BP, Gustavsen A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol Energy Mater Sol Cells 2010;94:87-105. https://doi.org/10.1016/j.solmat.2009.08.021.
Xia X, Ku Z, Zhou D, Zhong Y, Zhang Y, Wang Y, et al. Perovskite solar cell powered electrochromic batteries for smart windows. Mater. Horizons 2016;3:588–95. https://doi.org/10.1039/C6MH00159A.
Niklasson GA, Granqvist CG. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 2007;17:127–56. https://doi.org/10.1039/b612174h.
Wen R, Arvizu MA, Niklasson GA, Granqvist CG. Electrochromics for energy efficient buildings: towards long-term durability and materials rejuvenation. Surf Coating Technol 2016;278:121–5. https://doi.org/10.1016/j.surfcoat.2016.02.031.
Wang M, Xing X, Perepichka IF, Shi Y, Zhou D, Wu P, et al. Electrochromic smart windows can achieve an absolute private state through thermochromically engineered electrolyte. Adv. Energy Mater. 2019;9:1900433. https://doi.org/10.1002/aenm.201900433.
Zhang X, Tian Y, Li W, Dou S, Wang L, Qu H, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Sol Energy Mater Sol Cells 2019;200:109916. https://doi.org/10.1016/j.solmat.2019.109916.
Coskun O, Atak G. The effects of lithiation process on the performance of all-solid-state electrochromic devices. Thin Solid Films 2018;662:13-20. https://doi.org/10.1016/j.tsf.2018.07.019.
Patel KJ, Bhatt GG, Ray JR, Suryavanshi P, Panchal CJ. All-inorganic solid-state electrochromic devices: a review. J Solid State Electrochem 2017;21:337–47. https://doi.org/10.1007/s10008-016-3408-z.
Yang H, Wang C, Diao X, Wang H, Wang T, Zhu K. A new all-thin-film electrochromic device using LiBSO as the ion conducting layer. J Phys D: Appl Phys 2008;41:115301. https://doi.org/10.1088/0022-3727/41/11/115301.
Liu Q, Dong G, Xiao Y, Gao F, Wang M, Wang Q, et al. An all-thin-film inorganic electrochromic device monolithically fabricated on flexible PET/ITO substrate by magnetron sputtering. Mater Lett 2015;142:232–4. https://doi.org/10.1016/j.matlet.2014.11.151.
Oukassi S, Giroud-Garampon C, Dubarry C, Ducros C, Salot R. All inorganic thin film electrochromic device using LiPON as the ion conductor. Sol Energy Mater Sol Cells 2016;145:2-7. https://doi.org/10.1016/j.solmat.2015.06.052.
Li W, Zhang X, Chen X, Zhao Y, Wang L, Liu D, et al. Preparation and performance of fast-response ITO/Li-NiO/Li-WO3/ITO all-solid-state electrochromic devices by evaporation method. Mater Lett 2020;265:127464. https://doi.org/10.1016/j.matlet.2020.127464.
Zhang S, Cao S, Zhang T, Fisher A, Lee JY. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ Sci 2018;11:2884–92. https://doi.org/10.1039/C8EE01718B.
Sian TS, Reddy GB. Effect of adsorbed water vapor on Mg intercalation in electrochromic a-MoO3 films. Electrochim Acta 2004;49:5223–6. https://doi.org/10.1016/j.electacta.2004.06.035.
Sian TS, Reddy GB. Infrared and electrochemical studies on Mg intercalated a-MoO3 thin films. Solid State Ionics 2004;167:399-405. https://doi.org/10.1016/j.ssi.2004.01.005.
Sian TS, Reddy GB. Effect of size and valency of intercalant ions on optical properties of polycrystalline MoO3 films. J Electrochem Soc 2005;152:2323–6. https://doi.org/10.1149/1.2104007.
Icaza JC, Haasch RT, Guduru RK. Effect of ion size and charge density on the electrochemical characteristics of α-MoO3 using aqueous Be2+ and Mg2+ sulfate electrolytes. J Alloys Compd 2018;740:88-95. https://doi.org/10.1016/j.jallcom.2017.12.377.
Xiao Y, Dong G, Huang Q, Liu Q, Guo J, Liu J, et al. Electro-optical performance of inorganic monolithic electrochromic device with a pulsed DC sputtered LixMgyN ion conductor. J Solid State Electrochem 2018;22:1-9. https://doi.org/10.1007/s10008-017-3742–9.
Guo J, Wang M, Diao X, Zhang Z, Dong G, Yu H, et al. Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films. J Phys Chem C 2018;122:19037–43. https://doi.org/10.1021/acs.jpcc.8b05692.
Kraytsberg A, Dresner H, Auinat M, Shapira A, Ein-Eli Y. Atomic layer deposition of a particularized protective MgF2 film on a Li-ion battery LiMn1.5Ni0.5O4 cathode powder material. ChemNanoMat 2015;1:577–85. https://doi.org/10.1002/cnma.201500149.
Yianoulis P, Giannouli M. Thin solid films and nanomaterials for solar energy conversion and energy saving applications. J Nano Res 2009;2:49-60. https://doi.org/10.4028/www.scientific.net/JNanoR.2.49.
Yoshimura T, Watanabe M, Kiyota K, Tanaka M. Electrolysis in electrochromic devices consisting of WO3 and MgF2 thin films. Jpn J Appl Phys 1982;21:128–32. https://doi.org/10.1143/JJAP.21.128.
Bechinger C, Bullock JN, Zhang J-G, Tracy CE, Benson DK, Deb SK, et al. Low-voltage electrochromic device for photovoltaic-powered smart windows. J Appl Phys 1996;80:1226–32. https://doi.org/10.1063/1.363731.
Que W, Yao X. Characterization of the growth of LiNb3O8 compound when using MgF2 as a diffusion source for Mg-ION indiffusion in LiNbO3. Ferroelectrics 1996;186(1):45–8. https://doi.org/10.1080/00150199608218029.
Que W, Zhou Y, Lam Y, Chan Y, Kam C, Zhang L, et al. Magnesium-ion indiffusion to lithium niobate single-crystal fiber with MgF2 as diffusion source. Jpn J Appl Phys 1999;38:5137–42. https://doi.org/10.1143/JJAP.38.5137.
Xie L, Zhao S, Zhu Y, Zhang Q, Chang T, Huang A, et al. High performance and excellent stability of all-solid-state electrochromic devices based on a Li1.85AlOz ion conducting layer. ACS Sustainable Chem Eng 2019;7:17390–6. https://doi.org/10.1021/acssuschemeng.9b04501.
Xiao Y, Dong G, Guo J, Liu Q, Huang Q, Zhang Q, et al. Thickness dependent surface roughness of sputtered Li2.5TaOx ion conductor and its effect on electro-optical performance of inorganic monolithic electrochromic device. Sol Energy Mater Sol Cells 2018;179:319–27. https://doi.org/10.1016/j.solmat.2017.12.027.
Gamze A, Duyar C. LiNbO3 thin films for all-solid-state electrochromic devices. Opt Mater 2018;82:160–7. https://doi.org/10.1016/j.optmat.2018.05.062.
Yuan G, Hua C, Huang L, Defranoux C, Basa P, Liu Y, et al. Optical characterization of the coloration process in electrochromic amorphous and crystalline WO3 films by spectroscopic ellipsometry. Appl Surf Sci 2017;421:630–5. https://doi.org/10.1016/j.apsusc.2016.10.176.
El-Nahass MM, Saadeldin MM, Ali HAM, Zaghllol M. Electrochromic properties of amorphous and crystalline WO3 thin films prepared by thermal evaporation technique. Mater Sci Semicond Process 2015;9:201–5. https://doi.org/10.1016/j.mssp.2014.02.051.
Song X, Dong G, Gao F, Xiao Y, Diao X. Properties of NiOx and its influence upon all-thin-film ITO/NiOx/LiTaO3/WO3/ITO electrochromic devices prepared by magnetron sputtering. Vacuum 2015;111:48-54. https://doi.org/10.1016/j.vacuum.2014.09.007.
Fallah HR, Ghasemi M, Hassanzadeh A, Steki H. The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation. Mater Res Bull 2007;42(3):487–96. https://doi.org/10.1016/j.materresbull.2006.06.024.
Chen X, Dou S, Li W, Liu D, Zhang Y, Zhao Y, et al. All solid state electrochromic devices based on the LiF electrolyte. Chem Commun 2020;56:5018–21. https://doi.org/10.1039/D0CC00697A.
Huang Q, Dong G, Xiao Y, Diao X. Electrochemical studies of silicon nitride electron blocking layer for all-solid-state inorganic electrochromic device. Electrochim Acta 2017;252:331–7. https://doi.org/10.1016/j.electacta.2017.08.177.
Ding Y, Dong G, Zhou Y, Liu Q, Wang C, Wang M, et al. Improved performance of all-thin-film electrochromic devices with two ZrO2 protective layers. Ionics 2018;24:2427–34. https://doi.org/10.1007/s11581-017-2362–9.
Hassab S, Shen DE, Ӧsterholm AM, Da Rocha M, Song G, Alesanco Y. A new standard method to calculate electrochromic switching time. Sol Energy Mater Sol Cells 2018;185:54-60. https://doi.org/10.1016/j.solmat.2018.04.031.
He Y, Jones TW, Anderson KF, Duffy NW, Wang M, Dong G, et al. An extensible and tunable full-opaque cascade smart electrochromic device. Sol Energy Mater Sol Cells 2020;218:110740. https://doi.org/10.1016/j.solmat.2020.110740.
Oukassi S, Giroud-Garampon C, Dubarry C, Ducros C, Salot R. All inorganic thin film electrochromic device using LiPON as the ion conductor. Sol Energy Mater Sol Cells 2016;145:2-7. https://doi.org/10.1016/j.solmat.2015.06.052.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).