AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Progress and challenges of ceramics for supercapacitors

Xiaojun Zenga,b,1( )Hanbin Songb,1Zong-Yang Shena,( )Martin Moskovitsb
School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, United States

1 These authors contributed equally to this work.

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

● Highlight recent achievements in manufacturing the ceramic electrodes for supercapacitors.

Abstract

Supercapacitors (SCs) are one of the most promising electrical energy storage technologies systems due to their fast storage capability, long cycle stability, high power density, and environmental friendliness. Enormous research has focused on the design of nanomaterials to achieve low cost, highly efficient, and stable electrodes. Ceramic materials provide promising candidates for SCs electrodes. However, the low specific surface area and relatively low surface activity severely hinder the SCs performance of ceramic materials. Therefore, the basic understanding of ceramic materials, the optimization strategy, and the research progress of ceramic electrodes are the key steps to enable good electrical conductivity and excellent electron transport capabilities, and realize economically feasible ceramic electrodes in industry. Herein, we review recent achievements in manufacturing the ceramic electrodes for SCs, including metal oxide ceramics, multi-elemental oxide ceramics, metal hydroxide ceramics, metal sulfide ceramics, carbon-based ceramics, carbide and nitride ceramics, and other special ceramics (MXene). We focus on the unique and key factors in the component and structural design of ceramic electrodes, which correlate them with SCs performance. In addition, the current technical challenges and perspectives of ceramic electrodes for SCs are also discussed.

References

[1]

Raza W, Ali F, Raza N, Luo YW, Kim K-H, Yang JH, Kumar S, Mehmood A, Kwon EE. Recent advancements in supercapacitor technology. Nano Energy 2018;52: 441-73.

[2]

Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater 2017;16: 16-22.

[3]

Singh S, Jain S, Ps V, Tiwari AK, Nouni MR, Pandey JK, Goel S. Hydrogen: a sustainable fuel for future of the transport sector. Renew Sustain Energy Rev 2015;51: 623-33.

[4]
Ritchie H, Roser M. CO2 and greenhouse gas emissions. 2017.OurWorldInData.org.
[5]

Azcárate C, Mallor F, Mateo P. Tactical and operational management of wind energy systems with storage using a probabilistic forecast of the energy resource. Renew Energy 2017;102:445-56.

[6]

McKone JR, DiSalvo FJ, Abruña HD. Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery. J Mater Chem A 2017;5:5362-72.

[7]

Chen HS, Cong TN, Yang W, Tan CQ, Li YL, Ding YL. Progress in electrical energy storage system: a critical review. Prog Nat Sci 2009;19:291-312.

[8]

Noori A, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem Soc Rev 2019;48:1272-341.

[9]

Zhang SL, Pan N. Supercapacitors performance evaluation. Adv Energy Mater 2015;5:1401401.

[10]

Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 2009;38:2520-31.

[11]

Zeng XJ, Yang B, Li XP, Yu RH. Three-dimensional hollow CoS2 nanoframes fabricated by anion replacement and their enhanced pseudocapacitive performances. Electrochim Acta 2017;240:341-9.

[12]

Zhai SL, Karahan HE, Wang CJ, Pei ZX, Wei L, Chen Y. 1D supercapacitors for emerging electronics: current status and future directions. Adv Mater 2020;32:1902387.

[13]

Kurzweil P, Chwistek M. Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sources 2008;176:555-67.

[14]

Winter M, Ralph JB. What are batteries, fuel cells, and supercapacitors. Chem Rev 2004;104:4245-69.

[15]

Xue Q, Sun JF, Huang Y, Zhu MS, Pei ZX, Li HF, Wang YK, Li N, Zhang HY, Zhi CY. Recent progress on flexible and wearable supercapacitors. Small 2017;13:1701827.

[16]

Miller EE, Hua Y, Tezel FH. Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors. J Energy Storage 2018;20:30-40.

[17]

Najib S, Erdem E. Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv 2019;1:2817-27.

[18]

Moha Abdah MAA, Nabilah Azman NH, Kulandaivalu S, Sulaiman Y. Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 2020;186:108199.

[19]

Gonçalves JM, da Silva MI, Toma HE, Angnes L, Martins PR, Araki K. Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review. J Mater Chem A 2020;8:10534-70.

[20]

Zhao YC, Shi Z, Lin TQ, Suo LM, Wang C, Luo J, Ruan ZS, Wang CA, Li J. Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors. J Power Sources 2019;412:321-30.

[21]

Zhao YC, Shi Z, Li HY, Wang CA. Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes. J Mater Chem A 2018;6:12782-93.

[22]

Chen T, Li M, Song S, Kim P, Bae J. Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor. Nano Energy 2020;71:104549.

[23]

Liu Y, Wu QH, Liu LY, Manasa P, Kang L, Ran F. Vanadium nitride for aqueous supercapacitors: a topic review. J Mater Chem A 2020;8:8218-33.

[24]

Wan H, Li JM, Li K, Lin YP, Chen JM, Gao LJ, Nicolosi V, Xiao X, Lee J-M. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev 2021;50:1354-90.

[25]

Li Q, Dai ZW, Wu JB, Di T, Jiang R, Zheng X, Wang WZ, Ji XX, Li P, Xu ZH, Qu XP, Xu ZM, Zhou J. Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor. Adv Energy Mater 2020;10:1903750.

[26]

Hu MM, Zhang H, Hu T, Fan BB, Wang XH, Li ZJ. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev 2020;49:6666-93.

[27]

Allagui A, Freebornc TJ, Elwakil AS, Fouda ME, Maundy BJ, Radwan AG, Said Z, Ali Abdelkareem M. Review of fractional-order electrical characterization of supercapacitors. J Power Sources 2018;400:457-67.

[28]

Mohanty A, Jaihindh D, Fu Y-P, Senanayak SP, Mende LS, Ramadoss A. An extensive review on three dimension architectural metal-organic frameworks towards supercapacitor application. J Power Sources 2021;488:229444.

[29]

González A, Goikolea E, Barrena JA, Mysyk R. Renew Sustain Energy Rev 2016;58:1189-206.

[30]

Zhao HP, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Adv Sci 2017;4:1700188.

[31]

Wang FX, Wu XW, Yuan XH, Liu ZC, Zhang Y, Fu LJ, Zhu YS, Zhou QM, Wu YP, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 2017;46:6816-54.

[32]

Zhang YZ, Wang Y, Cheng T, Yao LQ, Li XC, La WY, Huang W. Printed supercapacitors: materials, printing and applications. Chem Soc Rev 2019;48:3229-64.

[33]

Zhou JW, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem Soc Rev 2017;46:6927-45.

[34]

Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J. Asymmetric supercapacitor electrodes and devices. Adv Mater 2017;29:1605336.

[35]
U.S. Congress. New structural materials technologies: opportunities for theuse of advanced ceramics and composites-a technical memorandum, Officeof Technology Assessment. OTA-TM-E-32. Washington DC, USA: US Government Printing Office; 1986.
[36]

Shen Z-Y, Wang Y, Tang YX, Yu YY, Luo W-Q, Wang XC, Li YM, Wang ZM, Song FS. Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J Materiomics 2019;5:641-8.

[37]

Colombo P. Conventional and novel processing methods for cellular ceramics. Philos Trans R Soc London, Ser A 2006;364:109-24.

[38]

Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ. Processing routes to macroporous ceramics: a review. J Am Ceram Soc 2006;89:1771-89.

[39]

Lang XY, Liu BT, Shi XM, Li YQ, Wen Z, Jiang Q. Ultrahigh-power pseudocapacitors based on ordered porous heterostructures of electron-correlated oxides. Adv Sci 2016;3:1500319.

[40]

Liu PP, Weng XL, Liu ZJ, Zhang YP, Qiu QY, Wang W, Zhou MY, Cai WZ, Ni M, Liu ML, Liu J. High-performance quasi-solid-state supercapacitor based on CuO nanoparticles with commercial-level mass loading on ceramic material La1-xSrxCoO3-δ as cathode. ACS Appl Energy Mater 2019;2:1480-8.

[41]

Chang P, Mei H, Zhao Y, Huang WZ, Zhou SX, Cheng LF. 3D structural strengthening urchin-like Cu(OH)2-based symmetric supercapacitors with adjustable capacitance. Adv Funct Mater 2019;29:1903588.

[42]

Chang YK, Sun XH, Ma MD, Mu CP, Li PH, Li L, Li MZ, Nie A, Xiang JY, Zhao ZS, He JL, Wen FS, Liu ZY, Tian YJ. Application of hard ceramic materials B4C in energy storage: design B4C@C core-shell nanoparticles as electrodes for flexible all-solid-state micro-supercapacitors with ultrahigh cyclability. Nano Energy 2020;75:104947.

[43]

Harrati A, Manni A, Bouari AE, Ei Hassani I-EEA, Sadik C. Elaboration and thermomechanical characterization of ceramic-based on Moroccan geomaterials: application in construction. Mater Today: SAVE Proc 2020. https://doi.org/10.1016/j.matpr.2020.04.344.

[44]

Faseeva GR, Nafikov RM, Lapuk SE, Zakharov YuA, Novik AA, Vjuginova AA, Kabirov RR, Garipov LN. Ultrasound-assisted extrusion of construction ceramic samples. Ceram Int 2017;43:7202-10.

[45]

Li DX, Shen Z-Y, Li ZP, Luo WQ, Song FS, Wang XC, Wang ZM, Li YM. Optimization of polarization behavior in (1-x)BSBNT-xNN ceramics for pulsed power capacitors. J Mater Chem C 2020;8:7650-7.

[46]

Dutta P, Sikdar A, Majumdar A, Borah M, Padma N, Ghosh S, Mait UN. Graphene aided gelation of MXene with oxidation protected surface for supercapacitor electrodes with excellent gravimetric performance. Carbon 2020. https://doi.org/10.1016/j.carbon.2020.07.041.

[47]

Wang X, Zhai HW, Qie BY, Cheng Q, Li AJ, Borovilas J, Xu BQ, Shi CM, Jin TW, Liao XB, Li YB, He XD, Du SY, Fu YK, Dontigny M, Zaghib K, Yang Y. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy 2019;60:205-12.

[48]

Zhao Y, Yan JH, Cai WP, Lai YM, Song J, Yu JY, Ding B. Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater 2019;23:306-13.

[49]

Chen G, Chen J, Pei WJ, Lu YM, Zhang QF, Zhang Q, He YB. Bismuth ferrite materials for solar cells: current status and prospects. Mater Res Bull 2019;110:39-49.

[50]

Li DX, Shen Z-Y, Li ZP, Luo WQ, Wang XC, Wang ZM, Song FS, Li YM. P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J Adv Ceram 2020;9:183-92.

[51]

Bae K, Kim DH, Choi HJ, Son J-W, Shim JH. High-performance protonic ceramic fuel cells with 1 μm thick Y: Ba(Ce, Zr)O3 electrolytes. Adv Energy Mater 2018;8:1801315.

[52]

Zeng XJ, Shui JL, Liu XF, Liu QT, Li YC, Shang JX, Zheng LR, Yu RH. Single-Atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv Energy Mater 2018;8:1701345.

[53]

Liu XF, Xiao LY, Zhang Y, Sun HJ. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye. J Materiomics 2020;6:256-62.

[54]

Singh P, Kaur G, Singh K, Singh B, Kaur M, Kaur M, Krishnan U, Kumar M, Bala R, Kumar A. Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties. Appl Nanosci 2018;8:1-9.

[55]

Celebanska A, Opallo M. Layer-by-layer gold-ceramic nanoparticulate electrodes for electrocatalysis. ChemElectroChem 2016;3:1629-34.

[56]

Verma S, Sinha-Ray S, Sinha-Ray S. Electrospun CNF supported ceramics as electrochemical catalysts for water splitting and fuel cell: a review. Polymers 2020;12:238.

[57]

Li ZH, Liu ST, Song SG, Xu WL, Sun YM, Dai YQ. Porous ceramic nanofibers as new catalysts toward heterogeneous reactions. Compos Commun 2019;15:168-78.

[58]

Cheng ZL, Ye F, Liu YS, Qiao TL, Li JP, Qin HL, Cheng LF, Zhang LT. Mechanical and dielectric properties of porous and wave-transparent Si3N4-Si3N4 composite ceramics fabricated by 3D printing combined with chemical vapor infiltration. J Adv Ceram 2019;8:399-407.

[59]

Jiang CS, Dunlap N, Li YJ, Guthrey H, Liu P, Lee S-H, Al-Jassim MM. Nonuniform ionic and electronic transport of ceramic and polymer/ceramic hybrid electrolyte by nanometer-sale operando imaging for solid-state battery. Adv Energy Mater 2020;10:2000219.

[60]

Rathod VT, Kumar JS, Jain A. Polymer and ceramic nanocomposites for aerospace applications. Appl Nanosci 2017;7:519-48.

[61]

Shu LL, Liang RH, Rao ZG, Fei LF, Ke SM, Wang Y. Flexoelectric materials and their related applications: a focused review. J Adv Ceram 2019;8:153-73.

[62]

Li WW, Huang HJ, Mei BC, Song JH, Yi GQ, Guo XS. Fabrication and characterization of polycrystalline Ho:CaF2 transparent ceramics for 2.0 μm laser application. Mater Lett 2017;207:37-40.

[63]

Gopinath NK, Jagadeesh G, Basu B. Shock wave-material interaction in ZrB2-SiC based ultra high temperature ceramics for hypersonic applications. J Am Ceram Soc 2019;102:6925-38.

[64]

Reveron H, Fornabaio M, Palmero P, Fürderer T, Adolfsson E, Lughi V, Bonifacio A, Sergo V, Montanaro L, Chevalier J. Towards long lasting zirconia-based composites for dental implants: transformation induced plasticity and its consequence on ceramic reliability. Acta Biomater 2017;48:423-32.

[65]

Kuang M, Han P, Huang LS, Cao N, Qian LP, Zheng GF. Electronic tuning of Co, Ni-based nanostructured (hydr) oxides for aqueous electrocatalysis. Adv Funct Mater 2018;28:1804886.

[66]

Kwon HJ, Shin K, Soh M, Chang H, Kim J, Lee J, Ko G, Kim BH, Kim D, Hyeon T. Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles. Adv Mater 2018;30:1704290.

[67]

Hu MZ, Yang WJ, Tan HY, Jin L, Zhang L, Kerns P, Dang YL, Dissanayake S, Schaefer S, Liu B, Zhu YY, Suib SL, He J. Template-free synthesis of mesoporous and crystalline transition metal oxide nanoplates with abundant surface defects. Matter 2020;2:1244-59.

[68]

Guan BY, Yu L, Lou XW. General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem. Int. Ed. 2017;56:2386-9.

[69]

Zeng XJ, Yang B, Li XP, Li RF, Yu RH. Solvothermal synthesis of hollow Fe3O4 sub-micron spheres and their enhanced electrochemical properties for supercapacitors. Mater Des 2016;101:35-43.

[70]

Nguyen T, Montemor MDF. Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices. Adv Sci 2019;6:1801797.

[71]

Yin XM, Li HJ, Yuan RM, Jiao YM, Lu JH. Templated synthesis of spinel cobaltite MCo2O4 (M=Ni, Co and Mn) hierarchical nanofibers for high performance supercapacitors. J Materiomics 2020 007. https://doi.org/10.1016/j.jmat.2020.12. 007.

[72]

Sekhar SC, Nagaraju G, Yu JS. High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material. Nano Energy 2018;48:81-92.

[73]

Zeng YX, Yu MH, Meng Y, Fang PP, Lu XH, Tong YX. Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 2016;6:1601053.

[74]

Nithya VD, Arul NS. Progress and development of Fe3O4 electrodes for supercapacitors. J Mater Chem A 2016;4:10767-78.

[75]

Xiong CY, Li MR, Zhao W, Duan C, Ni YH. Flexible N-Doped reduced graphene oxide/carbon Nanotube-MnO2 film as a Multifunctional Material for High-Performance supercapacitors, catalysts and sensors. J Materiomics 2020;6:523-31.

[76]

Xiong CY, Lin X, Liu HG, Li MR, Li BB, Jiao SS, Zhao W, Duan C, Dai L, Ni YH. Fabrication of 3D expanded graphite-based (MnO2 nanowalls and PANI nanofibers) hybrid as bifunctional material for high-performance supercapacitor and sensor. J Electrochem Soc 2019;166:A3965.

[77]

Zhang Y, Hu YX, Wang ZL, Lin TE, Zhu XB, Luo B, Hu H, Xing W, Yan ZF, Wang LZ. Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv Funct Mater 2020;30:2004172.

[78]

Zhao YC, Misch J, Wang CA. Facile synthesis and characterization of MnO2 nanomaterials as supercapacitor electrode materials. J Mater Sci Mater Electron 2016;27:5533-42.

[79]

Guan BY, Kushima A, Yu L, Li S, Li J, Lou XW. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv Mater 2017;29:1605902.

[80]

Jiang TC, Bu FX, Feng XX, Shakir I, Hao GL, Xu YX. Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 2017;11:5140-7.

[81]

Ma FX, Hu H, Wu HB, Xu CY, Xu ZC, Zhen L, Lou XW. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv Mater 2015;27:4097-101.

[82]

Wang ST, Yang Y, Dong YH, Zhang ZT, Tang ZL. Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J Adv Ceram 2019;8:1-18.

[83]

Yang Y, Wang ST, Jiang CH, Lu QC, Tang ZL, Wang X. Controlled synthesis of hollow Co-Mo mixed oxide nanostructures and their electrocatalytic and lithium storage properties. Chem Mater 2016;28:2417-23.

[84]

Zhang JM, Lin XP, Xue DY, Xu BB, Long D, Xue FF, Duan XC, Ye WB, Wang MS, Li QH. A generalized strategy for the synthesis of two-dimensional metal oxide nanosheets based on a thermoregulated phase transition. Nanoscale 2019;11:3200-7.

[85]

Li T, Heenan TMM, Rabuni MF, Wang B, Farandos NM, Kelsall GH, Matras D, Tan C, Lu XK, Jacques SDM, Brett DJL, Shearing PR, Michiel MD, Beale AM, Vamvakeros A, Li K. Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography. Nat Commun 2019;10:1497.

[86]

Yang Y, Xiong Y, Holtz ME, Feng XR, Zeng R, Chen G, DiSalvo FJ, Muller DA, Abruña HD. Octahedral spinel electrocatalysts for alkaline fuel cells. Proc Natl Acad Sci USA 2019;116:24425-32.

[87]

Wang Y, Yang Y, Jia SF, Wang XM, Lyu KJ, Peng YQ, Zheng H, Wei X, Ren H, Xiao L, Wang JB, Muller DA, Abruña HD, Hwang BJ, Lu JT, Zhuang L. Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat Commun 2019;10:1506.

[88]

Myung JH, Neagu D, Miller DN, Irvine JTS. Switching on electrocatalytic activity in solid oxide cells. Nature 2016;537:528-31.

[89]

Yoon KJ, Biswas M, Kim HJ, Park M, Hong J, Kim H, Son JW, Lee JH, Kim BK, Lee HW. Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells. Nano Energy 2017;36:9-20.

[90]

Nguyen AI, Suess DLM, Darago LE, Oyala PH, Levine DS, Ziegler MS, Britt RD, Tilley TD. Manganese-cobalt oxido cubanes relevant to manganese-doped water oxidation catalysts. J Am Chem Soc 2017;139:5579-87.

[91]

Kim JS, Kim B, Kim H, Kang K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv Energy Mater 2018;8:1702774.

[92]

Xue YJ, Sun SS, Wang Q, Dong ZH. Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. J Mater Chem A 2018;6:10595-626.

[93]

Zhuang LZ, Jia Y, Liu HL, Li ZH, Li MR, Zhang LZ, Wang X, Yang DJ, Zhu ZH, Yao XD. Sulfur-Modified oxygen vacancies in iron-cobalt oxide nanosheets: enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark. Angew. Chem. Int. Ed. 2020;59:14664-70.

[94]

Huang LL, Chen DW, Luo G, Lu YR, Chen C, Zou YQ, Dong CL, Li YF, Wang SY. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv Mater 2019;31:1901439.

[95]

Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016;11:601-25.

[96]

Liu YM, Tian D, Biswas AN, Xie ZH, Hwang S, Lee JH, Meng H, Chen JGG. Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew. Chem. Int. Ed. 2020;59:11345-8.

[97]

Wang CY, Zeng XJ, Jiang GM, Chen M, Zhu LY, Yu RG. General self-template synthesis of transition-metal oxide microspheres and their excellent charge storage properties. Electrochim Acta 2018;283:190-6.

[98]

Liu Y, Li XC, Shen WM, Dai Y, Kou W, Zheng WJ, Jiang XB, He GH. Multishelled transition metal-based microspheres: synthesis and applications for batteries and supercapacitors. Small 2019;15:1804737.

[99]

Li JF, Chen D, Wu QS. α-Fe2O3 cased carbon composite as pure negative electrode for application as supercapacitor. Eur J Inorg Chem 2019;2019:1301-12.

[100]

Sugimoto W, Yokoshima K, Murakami Y, Takasu Y. Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides. Electrochim Acta 2006;52:1742-8.

[101]

Casella IG, Gatta M. Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 2002;534:31-8.

[102]

Liu Y, Ata MS, Shi K, Zhu GZ, Botton GA, Zhitomirsky I. Surface modification and cathodic electrophoretic deposition of ceramic materials and composites using celestine blue dye. RSC Adv 2014;4:29652.

[103]

Ata MS, Zhitomirsky I. Electrophoretic nanotechnology of ceramics films. Adv Appl Ceram 2012;111:345-50.

[104]

Wei J, Nagarajan N, Zhitomirsky I. Manganese oxide films for electrochemical supercapacitors. J Mater Process Technol 2007;186:356-61.

[105]

Xing Y, Guo XH, Wu DP, Liu ZX, Fang SM, Suib SL. Construction of macroscopic 3D foams of metastable manganese oxides via a mild templating route: effects of atmosphere and calcination. J Alloys Compd 2017;719:22-9.

[106]

Milne J, Silva RM, Zhitomirsky I. Surface modification and dispersion of ceramic particles using liquid-liquid extraction method for application in supercapacitor electrodes. J Eur Ceram Soc 2019;39:3450-5.

[107]

Shilova OA, Antipov VN, Tikhonov PA, Kruchinina IY, Arsent’ev MY, Panova TI, Morozova LV, Moskovskaya VV, Kalinina MV, Tsvetkova IN. Ceramic nanocomposites based on oxides of transition metals of ionistors. Glass Phys Chem 2013;39:570-8.

[108]

Poon R, Liang W, Zhitomirsky I. Mn3O4 and (ZnFe)OOH composites for supercapacitors with high active mass. Metall Mater Trans A 2019;51:855-62.

[109]

Shen SF, Xu ML, Lin DB, Pan HB. The growth of urchin-like Co3O4 directly on sensor substrate and its gas sensing properties. Appl Surf Sci 2017;396:327-32.

[110]

Vidyadharan B, Aziz RA, Misnon II, Kumar GMA, Ismail J, Yusoff MM, Jose R. High energy and power density asymmetric supercapacitors using electrospun cobalt oxide nanowire anode. J Power Sources 2014;270:526-35.

[111]

Jose R, Krishnan SG, Vidyadharan B, Misnon II, Harilal M, Aziz RA, Ismail J, Yusoff MM. Supercapacitor electrodes delivering high energy and power densities. Mater Today 2016;3S:S48-S56.

[112]
B. Vidhyadharan, N.K.M. Zain, I.I Misnon, R.A. Aziz, J. Ismail, M.M. Yusoff, R. Jose, J. Alloys Compd. 610 (2014) 143-150.
[113]

Yus J, Ferrari B, Sanchez-Herencia AJ, Gonzalez Z. Understanding the effects of different microstructural contributions in the electrochemical response of nickel-based semiconductor electrodes with 3D hierarchical networks shapes. Electrochim Acta 2020;335:135629.

[114]

Yus J, Ferrari B, Sanchez-Herencia AJ, Caballero A, Morales J, Gonzalez Z. In situ synthesis and electrophoretic deposition of NiO/Ni core-shell nanoparticles and its application as pseudocapacitor. Coatings 2017;7:193.

[115]

Pang ZB, Duan JL, Zhao YY, Tang QW, He BL, Yu LM. A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140 ℃. J Power Sources 2018;400:126-34.

[116]

Kalinina MV, Morozova LV, Egorova TL, Arsent’ev MY, Drozdova IA, Shilova OA. The dual role of SiO2 as a pore former and sintering aid in the preparation of the porous ceramic in ZrO2-In2O3 system. Glass Phys Chem 2015;41:431-6.

[117]

Knöller A, Kilper S, Diem AM, Widenmeyer M, Runčevski T, Dinnebier RE, Bill J, Burghard Z. Ultrahigh damping capacities in lightweight structural materials. Nano Lett 2018;18:2519-24.

[118]

Li T, Cao Y, Xue W, Sun BT, Zhu DH. Self-assembly of graphene-based planar micro-supercapacitor with selective laser etching-induced superhydrophobic/superhydrophilic pattern. SN Appl Sci 2020;2:206.

[119]

Tennakone K, Apsonsu GLMP, Ariyasinghe YPYP, Buchanan RC, Perera VPS, Tennakone H, Wijayarathna TRCK. Dye-sensitized solar cells based on nanostructured semiconductor oxide ceramics with ultra-thin barrier layers. Integrated Ferroelectrics Int J 2010;115:120-31.

[120]

Zhang Y, Guo ZH, Han ZY, Xiao XY. Effect of rare earth oxides doping on MgAl2O4 spinel obtained by sintering of secondary aluminium dross. J Alloys Compd 2018;735:2597-603.

[121]

Zheng XY, Liu WJ, Qu QT, Zheng HH, Huang YH. Bi-functions of titanium and lanthanum co-doping to enhance the electrochemical performance of spinel LiNi0.5Mn1.5O4 cathode. J Materiomics 2019;5:156-63.

[122]

Liu Y, Ying YR, Fei LF, Liu Y, Hu QZ, Zhang GG, Pang SY, Lu W, Mak CL, Luo X, Zhou LM, Wei MD, Huang HT. Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J Am Chem Soc 2019;141:8136-45.

[123]

Zhou Y, Sun SN, Wei C, Sun YM, Xi PX, Feng ZX, Xu ZCJ. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv Mater 2019;31:1902509.

[124]

Hirakawa T, Shimokawa Y, Tokuzumi W, Sato T, Tsushida M, Yoshida H, Hinokuma S, Ohyama J, Machida M. Multicomponent spinel oxide solid solutions: a possible alternative to platinum group metal three-way catalysts. ACS Catal 2019;9:11763-73.

[125]

Anwar S, Muthu KS, Ganesh V, Lakshminarasimhan N. A comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routes. J Electrochem Soc 2011;58:A976-81.

[126]

Rani BJ, Ravi G, Yuvakkumar R, Ganesh V, Ravichandran S, Thambidurai M, Rajalakshmi AP, Sakunthala A. Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications. Appl Phys A 2018;124:511.

[127]

Shamitha C, Senthil T, Wu LX, Kumar BS, Anandhan S. Sol-gel electrospun mesoporous ZnMn2O4 nanofibers with superior specific surface area. J Mater Sci: Mater Electron 2017;28:15846-60.

[128]

Kovalenko AS, Shilova OA, Morozova LV, Kalinina MV, Drozdova IA, Arsent’ev MY. Features of the synthesis and the study of nanocrystalline cobalt-nickel spinel. Glass Phys Chem 2014;40:106-13.

[129]

Alvarez-Sanchez CO, Lasalde-Ramírez JA, Ortiz-Quiles EO, Massó-Ferret R, Nicolau E. Polymer-MTiO3 (M = Ca, Sr, Ba) composites as facile and scalable supercapacitor separators. Energy Sci Eng 2019;7:730-40.

[130]

Gu LL, Li T, Xu YJ, Sun CH, Yang ZY, Zhu DL, Chen DL. Effects of the particle size of BaTiO3 fillers on fabrication and dielectric properties of BaTiO3/polymer/Al films for capacitor energy-storage application. Materials 2019;12:439.

[131]

Tang HX, Lin YR, Sodano HA. Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv Energy Mater 2014;3:451-6.

[132]

Chung UC, Elissalde C, Mompiou F, Majimel J, Gomez S, Estrounès C, Marinel S, Klein A, Weill F, Michau D, Mornet S, Maglione M. Interface investigation in nanostructured BaTiO3/silica composite ceramics. J Am Ceram Soc 2010;93:865-74.

[133]

Maglione M, Elissalde C, Chung UC. Interface control in BaTiO3 based supercapacitors. Proc of SPIE 2010;7603:76030U.

[134]

Chung UC, Elissalde C, Mornet S, Maglione M, Estournès C. Controlling internal barrier in low loss BaTiO3 supercapacitors. Appl Phys Lett 2009;94:72903.

[135]

Bhattacharya D, Ghoshal D, Mondal D, Paul BK, Pal J, Gupta B, Bose N, Nandy P, Basu M, Das S. Delafossite type CuCo0.5Ti0.5O2 composite structure: a futuristic ceramics for supercapacitor and EMI shielding application. Ceram Int 2020. https://doi.org/10.1016/j.ceramint.2020.12.135.

[136]

Maity S, Samanta M, Sen A, Chattopadhyay KK. Investigation of electrochemical performances of ceramic oxide CaCu3Ti4O12 nanostructures. J Solid State Chem 2019;269:600-7.

[137]

Xia WM, Liu YM, Wang G, Li JL, Cao CJ, Hu QY, Chen YQ, Lu ZL, Wang DW. Frequency and temperature independent (Nb0.5Ga0.5)x(Ti0.9Zr0.1)1-xO2 and ceramics with giant dielectric permittivity and low loss. Ceram Int 2020;46:2954-9.

[138]

Shiri HM, Ehsani A, Shayeh JS. Synthesis and highly efficient supercapacitor behavior of a novel poly pyrrole/ceramic oxide nanocomposite film. RSC Adv 2015;5:91062-8.

[139]

Xu CJ, Zhang ZX, Zhang JY, Lei LW, Zhang DM, Fu ZY. A new route to fabricate barium titanate with high permittivity. Ceram Int 2014;40:10927-31.

[140]

Morozova LV, Panova TI, Popov VP, Tsvetkova IN, Shilova OA. Synthesis and study of oxide and phosphor-silicate nanocomposites for the creation of new-generation supercapacitors. Glass Phys Chem 2012;38:332-8.

[141]

Zhang X, He BL, Zhao YY, Tang QW. A porous ceramic membrane tailored high-temperature supercapacitor. J Power Sources 2018;379:60-7.

[142]

Kosmulski M, Skubiszewska-Zieba J, Leboda R, Marczewska-Boczkowska K, Próchniak P. J Colloid Interface Sci 2007;309:160-8.

[143]

McOwen DW, Xu SM, Gong YH, Wen Y, Godbey GL, Gritton JE, Hamann TR, Dai JQ, Hitz GT, Hu LB, Wachsman ED. 3D-printing electrolytes for solid-state batteries. Adv Mater 2018;30:1707132.

[144]

Lee JW, Koh JH. Grain size effects on the dielectric properties of CaCu3Ti4O12 ceramics for supercapacitor applications. Ceram Int 2015;41:10442-7.

[145]

Shao SF, Zhang JL, Zheng P, Zhong WL, Wang CL. Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J Appl Phys 2006;99:84106.

[146]

Mishuk E, Shklovsky J, Berg Y, Vengerovsky N, Paul T, Kotler Z, Tsur Y, Shacham-Diamand Y, Krylov S, Lubomirsky I. Femtosecond laser processing of ceria-based micro actuators. Microelectron Eng 2019;217:111126.

[147]

Padmini M, Elumalai P, Thomas P. Symmetric supercapacitor performances of CaCu3Ti4O12 decorated polyaniline nanocomposite. Electrochim Acta 2018;292:558-67.

[148]

Wang L, Gao F, Xu J, Zhang KN, Wang M, Qin MJ. Fabrication, characterization and dielectric properties of KH550 modified BST/PVDF nanocomposites with high dielectric strength. High Volt 2016;1:158-65.

[149]
lahmar A, Belhadi J, El Marssi M, Zannen M, Khemakhem H, Al-Dahoudi N.Energy storage property of lead-free Na0.5Bi0.5TiO3 ceramic and thin film, international conference in energy and sustainability in small developingeconomies. 2017. p. 1-4.
[150]

Gu R, Yu K, Wu LF, Ma RP, Sun HC, Jin L, Xu YL, Xu Z, Wei XY. Dielectric properties and I-V characteristics of Li0.5La0.5TiO3 solid electrolyte for ceramic supercapacitors. Ceram Int 2019;45:8243-7.

[151]

Bohnke O. The fast lithium-ion conducting oxides Li3xLa2/3-xTiO3 from fundamentals to application. Solid State Ionics 2008;179:9-15.

[152]

Lu DL, Zhao RR, Wu JL, Ma JM, Huang ML, Yao YB, Tao T, Liang B, Zhai JW, Lu SG. Investigations on the properties of Li3xLa2/3-xTiO3 based all-solid-state supercapacitor: relationships between the capacitance, ionic conductivity, and temperature. J Eur Ceram Soc 2020;40:2396-403.

[153]

Liu PP, Liu ZJ, Wu P, Qu X, Zhang YP, Cai WZ, Yu FY, Ni M, Cheng S, Liu ML, Liu J. Enhanced capacitive performance of nickel oxide on porous La0.7Sr0.3CoO3-δ ceramic substrate for electrochemical capacitors. Int J Hydrogen Energy 2018;43:19589-99.

[154]

Tuncer M, Bakan F, Gocmez H, Erdem E. Capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca8H2(PO4)6⋅5H2O) as an electrode material for supercapacitors: biosupercaps. Nanoscale 2019;11:18375-81.

[155]

El-Desoky MM, Al-Syadi AM, Al-Assiri MS, Hassan HMA, El Enany G. Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices. J Solid State Electrochem 2016;20:2663-71.

[156]

Hu X, Chen YL, Hu ZC, Li Y, Ling ZY. All-solid-state supercapacitors based on a carbon-filled porous/dense/porous layered ceramic electrolyte. J Electrochem Soc 2018;165:A1269-74.

[157]
Liao GY, Geier S, Mahrholz T, Wierach P, Wiedemann M. Li1.4Al0.4Ti1.6(PO4)3used as solid electrolyte for structural supercapacitors, Proceedings of theASME 2015 Conference. 2015.
[158]
Liao GY, Geier S, Mahrholz T, Wierach P, Wiedemann M. Temperature influence on electrical properties of carbon nanotubes modified solidelectrolyte-based structural supercapacitor. In: Smart Materials, AdaptiveStructures and Intelligent Systems; 2017. p. 58257. V001T01A011.
[159]

Fu J. Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ionics 1997;96:195-200.

[160]

Chowdari BVR, Rao GVS, Lee GYH. XPS and ionic conductivity studies on Li2O-Al2O3-(TiO2 or GeO2)-P2O5 glass-ceramics. Solid State Ionics 2000;136:1067-75.

[161]

Gonzalez Z, Ferrari B, Sanchez-Herencia AJ, Caballero A, Morales J. Use of polyelectrolytes for the fabrication of porous NiO films by electrophoretic deposition for supercapacitor electrodes. Electrochim Acta 2016;211:110-8.

[162]

Li HY, Zhao YC, Wang CA. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials. Front Mater Sci 2018;12:354-60.

[163]

Xiong CY, Li BB, Liu HG, Zhao W, Duan C, Wu HW, Ni YH. A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. J Mater Chem A 2020;8:10898-908.

[164]

Cherusseri J, Choudhary N, Kumar KS, Jung Y, Thomas J. Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horiz 2019;4:840-58.

[165]

Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 2017;20:116-30.

[166]

Li HY, Zhao YC, Wang CA. Formation of molybdenum-cobalt sulfide by one-step hydrothermal reaction for high-performance supercapacitors. J Mater Sci Mater Electron 2018;29:13703-8.

[167]

Yang Y, Fei HL, Ruan GD, Xiang CS, Tour JM. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv Mater 2014;26:8163-8.

[168]

Tian YY, Song XF, Liu J, Zhao LP, Zhang P, Gao L. Generation of monolayer MoS2 with 1T phase by spatial-confinement-induced ultrathin PPy anchoring for high-performance supercapacitor. Adv Mater Interfaces 2019;6:1900162.

[169]

Yu XY, Lou XW. Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater 2018;8:1701592.

[170]

Liu YP, Qi XH, Li L, Zhang SH, Bi T. MOF-derived PPy/carbon-coated copper sulfide ceramic nanocomposite as high-performance electrode for supercapacitor. Ceram Int 2019;45:17216-23.

[171]

Kim K, Lee T, Kwon Y, Seo Y, Song J, Park JK, Lee H, Park JY, Ihee H, Cho SJ, Ryoo R. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 2016;535:131-5.

[172]

Lee GD, Robertson AW, Lee S, Lin YC, Oh JW, Park H, Joo YC, Yoon E, Suenaga K, Warner JH, Ewels CP. Direct observation and catalytic role of mediator atom in 2D materials. Sci. Adv 2020;6:eaba4942.

[173]

Fu YB, Yang H, Gao YX, Huang L, Berger R, Liu JZ, Lu HL, Cheng ZH, Du SX, Gao HJ, Feng XL. On-surface synthesis of NBN-doped zigzag-edged graphene nanoribbons. Angew. Chem. Int. Ed. 2020;59:8873-9.

[174]

Kumar R, Sahoo S, Joanni E, Singh RK, Maegawa K, Tan WK, Kawamura G, Kar KK, Matsuda A. Heteroatom doped graphene engineering for energy storage and conversion. Mater Today 2020. https://doi.org/10.1016/j.mattod.2020.04.010.

[175]

Zhang X, Xu YX, Wang MC, Liu EZ, Zhao NQ, Shi CS, Lin D, Zhu FL, He CN. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites. Nat Commun 2020;11:2775.

[176]

Zeng XJ, Zhu LY, Jiang GM, Wang CY, Xia ZH, Yu RH. Template-free formation of uniform Fe3O4 hollow nanoflowers supported on reduced graphene oxide and their excellent microwave absorption performances. Phys Status Solidi A 2018;215:1701049.

[177]

Flouda P, Shah SA, Lagoudas DC, Green MJ, Lutkenhaus JL. Highly multifunctional dopamine-functionalized reduced graphene oxide supercapacitors. Matter 2019;1:1532-46.

[178]

Zeng XJ, Yang B, Yang HZ, Zhu LY, Yu RH. Solvothermal synthesis and good microwave absorbing properties for magnetic porous-Fe3O4/graphene nanocomposites. AIP Adv 2017;7:56605.

[179]

Bai T, Fang YJ, Wang JL. Preparation and tribological properties of graphene/TiO2 ceramic films. Ceram Int 2017;43:13299-307.

[180]

Xiang R, Inoue T, Zheng YJ, Kumamoto A, Qian Y, Sato Y, Liu M, Tang DM, Gokhale D, Guo J, Hisama K, Yotsumoto S, Ogamoto T, Arai H, Kobayashi Y, Zhang H, Hou B, Anisimov A, Maruyama M, Miyata Y, Okada S, Chiashi S, Li Y, Kong J, Kauppinen EI, Ikuhara Y, Suenaga K, Maruyama S. One-dimensional van der Waals heterostructures. Science 2020;367:537-42.

[181]

Kweon DH, Okyay MS, Kim SJ, Jeon JP, Noh HJ, Park N, Mahmood J, Baek JB. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat Commun 2020;11:1278.

[182]

Dai BY, Fang JJ, Yu YR, Sun ML, Huang HM, Lu CH, Kou JH, Zhao YJ, Xu ZZ. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv Mater 2020;32:1906361.

[183]

Zeng XJ, Jang MJ, Choi SM, Cho HS, Kim CH, Myung NV, Yin YD. Single-crystalline CoFe nanoparticles encapsulated in N-doped carbon nanotubes as a bifunctional catalyst for water splitting. Mater Chem Front 2020;4:2307-13.

[184]

Yang ZC, Qian JS, Yu AQ, Pan BC. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc Natl Acad Sci USA 2019;116:6659-64.

[185]

Wang Y, Wei HL, Lv HF, Chen ZX, Zhang JJ, Yan XY, Lee L, Wang ZMM, Chueh YL. Highly stable three-dimensional nickel-cobalt hydroxide hierarchical heterostructures hybridized with carbon nanotubes for high performance energy storage devices. ACS Nano 2019;13:11235-48.

[186]

Zeng XJ, Zhu LY, Yang B, Yu RH. Necklace-like Fe3O4 nanoparticle beads on carbon nanotube threads for microwave absorption and supercapacitors. Mater Des 2020;189:108517.

[187]

Tabassum H, Mahmood A, Zhu BJ, Liang ZB, Zhong RQ, Guo SJ, Zou RQ. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ Sci 2019;12:2924-56.

[188]

Zhu LY, Zeng XJ, Chen M, Yu RH. Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances. RSC Adv 2017;7:26801-8.

[189]

Yang LW, Zhang XS, Liu HT, Zu M. Thermal resistant, mechanical and electrical properties of a novel ultrahigh-content randomly-oriented CNTs reinforced SiC matrix composite-sheet. Compos B Eng 2017;119:10-7.

[190]

He XJ, Xie XY, Wang JX, Ma XF, Xie YY, Gu J, Xiao N, Qiu JS. From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors. Nanoscale 2019;11:6610-9.

[191]

Dong XM, Jin HL, Wang RY, Zhang JJ, Feng X, Yan CZ, Chen SQ, Wang S, Wang JC, Lu J. High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials. Adv Energy Mater 2018;8:1702695.

[192]

Xiong GP, He PG, Lyu ZP, Chen TF, Huang BY, Chen L, Fisher TS. Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat Commun 2018;9:790.

[193]

Wang YH, Zhang DY, Lu Y, Wang WX, Peng T, Zhang YG, Guo Y, Wang YG, Huo KF, Kim JK, Luo YS. Cable-like double-carbon layers for fast ion and electron transport: an example of CNT@NCT@MnO2s 3D nanostructure for high-performance supercapacitors. Carbon 2019;143:335-42.

[194]

Pankratov D, Pankratova G, Dyachkova TP, Falkman P, Åkerlund HE, Toscano MD, Chi QJ, Gorton L. Supercapacitive biosolar cell driven by direct electron transfer between photosynthetic membranes and CNT networks with enhanced performance. ACS Energy Lett 2017;2:2635-9.

[195]

Zhao DD, Chang W, Lu CB, Yang CQ, Jiang KY, Chang X, Lin HL, Zhang F, Han S, Hou ZS, Zhuang XD. Charge transfer salt and graphene heterostructure-based micro-supercapacitors with alternating current line-filtering performance. Small 2019;15:1901494.

[196]

Xu P, Gao QM, Ma L, Li ZY, Zhang H, Xiao H, Liang X, Zhang TF, Tian XH, Liu CH. A high surface area N-doped holey graphene aerogel with low charge transfer resistance as high performance electrode of non-flammable thermostable supercapacitors. Carbon 2019;149:452-61.

[197]

Xiong CY, Li MR, Zhao W, Duan C, Dai L, Shen MX, Xu YJ, Ni YH. A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors. Chem Eng J 2020;396:125318.

[198]

Xiong CY, Li MR, Nie SX, Dang WH, Zhao W, Dai L, Ni YH. Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. J Power Sources 2020;471:228448.

[199]

Xiong CY, Dang WH, Nie SX, Qin CR, Li DP, Shen MX, Xu YJ, Ni YH. Fabrication of high value cellulose nanofibers@Ni foam by non carbonization: various application developed during the preparation. Cellulose 2021.

[200]

Kesavan D, Mariappan VK, Krishnamoorthy K, Kim S-J. Carbothermal conversion of boric acid into boron-oxy-carbide nanostructures for high-power supercapacitors. J Mater Chem A 2021;9:915-21.

[201]

Yus J, Bravo Y, Sanchez-Herencia AJ, Ferrari B, Gonzalez Z. Electrophoretic deposition of RGO-NiO core-shell nanostructures driven by heterocoagulation method with high electrochemical performance. Electrochim Acta 2019;308:363-72.

[202]

Zhang QQ, Lin D, Deng BW, Xu X, Nian Q, Jin SY, Leedy KD, Li H, Cheng GJ. Flyweight superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv Mater 2017;29:1605506.

[203]

Xu SP, Sun FQ, Yang SM, Pan ZZ, Long JF, Gu FL. Fabrication of SnO2-reduced graphite oxide monolayer-ordered porous film gas sensor with tunable sensitivity through ultra-violet light irradiation. Sci Rep 2015;5:8939.

[204]

Moyano JJ, Mosa J, Aparicio M, Pérez-Coll D, Belmonte M, Miranzo P, Osendi MI. Strong and light cellular silicon carbonitride-reduced graphene oxide material with enhanced electrical conductivity and capacitive response. Addit Manuf 2019;30:100849.

[205]

Moni P, Chaves WF, Wihelm M, Rezwan K. Polysiloxane microspheres encapsulated in carbon allotropes: a promising material for supercapacitor and carbon dioxide capture. J Colloid Interface Sci 2019;542:91-101.

[206]

David L, Shareef KM, Abass MA, Singh G. Three-dimensional polymer-derived ceramic/graphene paper as a Li-ion battery and supercapacitor electrode. RSC Adv 2016;6:53894-902.

[207]

Li M, Yang N, Wood V, Park HG. Characterization of contact resistances in ceramic-coated vertically aligned carbon nanotube arrays. RSC Adv 2019;9:7266-75.

[208]

Singh R, Chakravarty A, Mishra S, Prajapati RC, Dutta J, Bhat IK, Pandel U, Biswas SK, Muraleedharan K. AlN-SWCNT metacomposites having tunable negative permittivity in radio and microwave frequencies. ACS Appl Mater Interfaces 2019;11:48212-20.

[209]

Carcía-Céspedes J, Álvarez-García J, Zhang X, Hampshire J, Bertran E. Optimal deposition conditions of TiN barrier layers for the growth of vertically aligned carbon nanotubes onto metallic substrates. J Phys D: Appl Phys 2009;42:104002.

[210]

Lee H, Kim HK, Cho MS, Choi JB, Lee YK. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta 2011;56:7460-6.

[211]

Sinan N, Unur E. Fe3O4/carbon nanocomposite: investigation of capacitive & magnetic properties for supercapacitor applications. Mater Chem Phys 2016;183:571-9.

[212]

Suzuki S, Hibino M, Miyayama M. High rate lithium intercalation properties of V2O5/carbon/ceramic-filler composites, J. Power Sources. 2003:513-7.

[213]

Oschatz M, Kockrick E, Rose M, Borchardt L, Klein N, Senkovska I, Freudenberg T, Korenblit Y, Yushin G, Kaskel S. A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon 2010;48:3987-92.

[214]

Kim KM, Latifatu M, Lee YG, Ko JM, Kim JH, Cho WI. Effect of ceramic filler-containing polymer hydrogel electrolytes coated on the polyolefin separator on the electrochemical properties of activated carbon supercapacitor. J Electroceram 2014;32:146-53.

[215]

Sun YL, Ma PJ, Liu LY, Chen JT, Zhang X, Lang JW, Yan XB. Solar-thermal driven self-heating of micro-supercapacitors at low temperatures. Sol RRL 2018;2:1800223.

[216]

Bon CY, Mohammed L, Kim S, Manasi M, Isheunesu P, Lee KS, Ko JM. Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications. J Ind Eng Chem 2018;68:173-9.

[217]

Liu MT, Turcheniuk K, Fu WB, Yang Y, Liu M, Yushin G. Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire Polyvinyl butyral nonwoven membranes. Nano Energy 2020;71:104627.

[218]

Ji LW, Meduri P, Agubra V, Xiao XC, Alcoutlabi M. Graphene-based nanocomposites for energy storage. Adv Energy Mater 2016;6:1502159.

[219]

Mao JJ, Iocozzia J, Huang JY, Meng K, Lai YK, Lin ZQ. Graphene aerogels for efficient energy storage and conversion. Energy Environ Sci 2018;11:772-99.

[220]

Zhang LL, Wang YJ, Niu ZQ, Chen J. Single atoms on graphene for energy storage and conversion. Small Methods 2019;3:1800443.

[221]

Xia W, Qu C, Liang ZB, Zhao B, Dai SG, Qiu B, Jiao Y, Zhang QB, Huang XY, Guo WH, Dang D, Zou RQ, Xia DG, Xu Q, Liu ML. High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite. Nano Lett 2017;17:2788-95.

[222]

Zhang ZY, Lee CS, Zhang WJ. Vertically aligned graphene nanosheet arrays: synthesis, properties and applications in electrochemical energy conversion and storage. Adv Energy Mater 2017;7:1700678.

[223]

Chen K, Shi LR, Zhang YF, Liu ZF. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem Soc Rev 2018;47:3018-36.

[224]

Lal MS, Sundara R. High entropy oxides-a cost-effective catalyst for the growth of high yield carbon nanotubes and their energy applications. ACS Appl Mater Interfaces 2019;11:30846-57.

[225]

Muhulet A, Miculescu F, Voicu SI, Schütt F, Thakur VK, Mishrac YK. Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater Today Energy 2018;9:154-86.

[226]

Lin ZQ, Zeng ZP, Gui XC, Tang ZK, Zou MC, Cao AY. Carbon nanotube sponges, aerogels, and hierarchical composites: synthesis, properties, and energy applications. Adv Energy Mater 2016;6:1600554.

[227]

Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a potential material for energy conversion and storage. Prog Energy Combust Sci 2018;64:219-53.

[228]

Wang JG, Liu HZ, Zhang XY, Li X, Liu XR, Kang FY. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage. Small 2018;14:1703950.

[229]

Peng YT, Le ZY, Wen MC, Zhang DQ, Chen Z, Wu HB, Li HX, Lu YF. Mesoporous single-crystal-like TiO2 mesocages threaded with carbon nanotubes for high-performance electrochemical energy storage. Nano Energy 2017;35:44-51.

[230]

Su L, Wang HJ, Niu M, Dai S, Cai ZX, Yang BG, Huyan HX, Pan XQ. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Sci. Adv 2020;6:6689.

[231]

Weng W, Wang SB, Xiao W, Lou XW. Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction. Adv Mater 2020:2001560.

[232]

Li YS, Wu HB, Kim HN, Li XJ, Huang ZR. Simultaneously enhanced toughness and strain tolerance of SiC-based ceramic composite by in-situ formation of VB2 particles. J Eur Ceram Soc 2017;37:399-405.

[233]

Jackson C, Smith GT, Inwood DW, Leach AS, Whalley PS, Callisti M, Polcar T, Russell AE, Levecque P, Kramer D. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat Commun 2017;8:15802.

[234]

Zeng XJ, Liu WL. Aqueous tape casting of B4C ceramics. Adv Appl Ceram 2016;115:224-8.

[235]

Ye F, Song Q, Zhang ZC, Li W, Zhang SY, Yin XW, Zhou YZ, Tao HW, Liu YS, Cheng LF, Zhang LT, Li HJ. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv Funct Mater 2018;28:1707205.

[236]

Zhao YX, Bian H, Fu W, Hu Y, Song XG, Liu D. Laser-induced metallization of porous Si3N4 ceramic and its brazing to TiAl alloy, Laser-induced metallization of porous Si3N4 ceramic and its brazing to TiAl alloy. J Am Ceram Soc 2019;102:32-6.

[237]

Li XX, Liu Q, Chen SL, Li WJ, Liang Z, Fang Z, Yang WY, Tian Y, Yang Y. Quasi-aligned SiC@C nanowire arrays as free-standing electrodes for high-performance micro-supercapacitors. Energy Storage Mater 2020;27:261-9.

[238]

Chabi S, Rocha VG, García-Tuñoń E, Ferraro C, Saiz E, Xia Y, Zhu Y. Ultralight, strong, three-dimensional SiC structures. ACS Nano 2016;10:1871-6.

[239]

Ding GJ, He RJ, Zhang KQ, Xia M, Feng CW, Fang DN. Dispersion and stability of SiC ceramic slurry for stereolithography. Ceram Int 2020;46:4720-9.

[240]

Zeng XJ, Liu WL. Enhanced sintering of boron carbide-silicon composites by silicon. J Mater Eng Perform 2016;25:5014-9.

[241]

Xiang SS, Ma LN, Yang B, Dieudonne Y, Pharr GM, Lu J, Yadav D, Hwang C, LaSalvia JC, Haber RA, Hemker KJ, Xie KY. Tuning the deformation mechanisms of boron carbide via silicon doping. Sci. Adv 2019;5:352.

[242]

Li YS, Kim HN, Wu HB, Kim MJ, Ko JW, Park YJ, Huang ZR, Kim HD. Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C. J Am Ceram Soc 2018;101:4128-36.

[243]

Hu DL, Gu H, Zou J, Zheng Q, Zhang GJ. Core-rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2-SiC-MC ceramics (M=Nb, Hf, Ta, W). J Materiomics 2021;7:69-79.

[244]

Mujib SB, Cuccato R, Mukherjee S, Franchin G, Colombo P, Singh G. Electrospun SiOC ceramic fiber mats as freestanding electrodes for electrochemical energy storage applications. Ceram Int 2020;46:3565-73.

[245]

Pazhamalai P, Krishnamoorthy K, Sahoo S, Mariappan VK, Kim SJ. Carbothermal conversion of siloxene sheets into silicon-oxy-carbide lamellae for high-performance supercapacitors. Chem Eng J 2020;387:123886.

[246]

Meier A, Weinberger M, Pinkert K, Oschatz M, Paasch S, Giebeler L, Althues H, Brunner E, Eckert J. Stefan Kaskel, Silicon oxycarbide-derived carbons from a polyphenylsilsequioxane precursor for supercapacitor applications. Microporous Mesoporous Mater 2014;188:140-8.

[247]

Soares DM, Singh G. SiOC functionalization of MoS2 as a means to improve stability as sodium-ion battery anode. Nanotechnology 2020;31:145403.

[248]

Zhao YX, Kang WM, Li L, Yan GL, Wang XQ, Zhuang XP, Cheng BW. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors. Electrochim Acta 2016;207:257-65.

[249]

Kim M, Oh I, Kim J. Supercapacitive behavior depending on the mesopore size of three-dimensional micro-, meso- and macroporous silicon carbide for supercapacitors. Phys Chem Chem Phys 2015;17:4424-33.

[250]

Kim M, Oh I, Kim J. Influence of surface oxygen functional group on the electrochemical behavior of porous silicon carbide based supercapacitor electrode. Electrochim Acta 2016;196:357-68.

[251]

Chen JH, Liu WN, Yang T, Li B, Su JD, Hou XM, Chou KC. A facile synthesis of a three-dimensional flexible 3C-SiC sponge and its wettability. Cryst Growth Des 2014;14:4624-30.

[252]

Lin G, Wang YW, Fang YJ, Lu R, Sha J. Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric. J Power Sources 2013;243:648-53.

[253]

Lin G, Wang YW, Lu R, Wang W, Peng XS, Sha J. Silicon carbide nanowires@Ni(OH)2 core-shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability. J Power Sources 2015;273:479-85.

[254]

Kim M, Kim J. Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys Chem Chem Phys 2014;16:11323-36.

[255]

Kim M, Yoo Y, Kim J. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors. J Power Sources 2014;265:214-22.

[256]

Qin B, Han Y, Ren YX, Sui D, Zhou Y, Zhang M, Sun ZH, Ma YF, Chen YS. A ceramic-based separator for high-temperature supercapacitors. Energy Technol 2018;6:306-11.

[257]

Jin T, Sang XH, Unocic RR, Kinch RT, Liu XF, Hu J, Liu HL, Dai S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv Mater 2018;30:1707512.

[258]

Reddy IN, Sreedhar A, Reddy CV, Shim J, Cho M, Yoo K, Kim D, Gwag JS. High performance hierarchical SiCN nanowires for efficient photocatalytic-photoelectrocatalytic and supercapacitor applications. Appl Catal B Environ 2018;237:876-87.

[259]

Yao SM, Xi K, Li GR, Gao XP. Preparation and electrochemical properties of Co-Si3N4 nanocomposites. J Power Sources 2008;184:657-62.

[260]

Xiao ZX, Lei C, Yu CH, Chen X, Zhu ZX, Jiang HR, Wei F. Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Mater 2020;24:565-73.

[261]

Kim SJ, Kim MC, Han SB, Lee GH, Choe HS, Kwak DH, Choi SY, Son BG, Shin MS, Park KW. 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 2016;27:545-53.

[262]

Wan P, Li M, Xu K, Wu HB, Chang KK, Zhou XB, Ding XD, Huang ZR, Zong HX, Huang Q. Seamless joining of silicon carbide ceramics through an sacrificial interlayer of Dy3Si2C2. J Eur Ceram Soc 2019;39:5457-62.

[263]

Liu HH, Du B, Chu YH. Synthesis of the ternary metal carbide solid-solution ceramics by polymer-derived-ceramic route. J Am Ceram Soc 2020;103:2970-4.

[264]

Hu TY, Yao MY, Hu DL, Gu H, Wang YJ. Effect of mechanical alloying on sinterability and phase evolution in pressure-less sintered TiB2-TiC ceramics. J Materiomics 2019;5:670-8.

[265]

Neuman EW, Brown-Shaklee HJ, Hilmas GE, Fahrenholtz WG. Titanium diboride-silicon carbide-boron carbide ceramics with super-high hardness and strength. J Am Ceram Soc 2008;101:497-501.

[266]

Han XX, Girman V, Sedlak R, Dusza J, Castle EG, Wang YC, Reece M, Zhang CY. Improved creep resistance of high entropy transition metal carbides. J Eur Ceram Soc 2020;40:2709-15.

[267]

Wang HL, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao CS, Liu ZL, Fang MH, Ou G, Gao HJ, Li XY, Wu H. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. Sci. Adv 2017;3:e1603170.

[268]

Zekentes K, Rogdakis K. SiC nanowires: material and devices. J Phys D Appl Phys 2011;44:133001.

[269]

Cheng GM, Chang TH, Qin QQ, Huang HC, Zhu Y. Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett 2014;14:754-8.

[270]

Shi YF, Zhang F, Hu YS, Sun XH, Zhang YC, Lee HI, Chen LQ, Stucky GD. Low-Temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction. J Am Chem Soc 2010;132:5552-3.

[271]

Kim YW, Kultayeva S, Sedláček J, Hanzel O, Tatarko P, Lenčéš Z, Šajgalík P. Thermal and electrical properties of additive-free rapidly hot-pressed SiC ceramics. J Eur Ceram Soc 2020;40:234-40.

[272]

Wang Y, Yang ZW, Zhang LX, Wang DP, Feng JC. Microstructure and mechanical properties of SiO2-BN ceramic and Invar alloy joints brazed with Ag-Cu-Ti+ + TiH2 + BN composite filler. J Materiomics 2016;2:66-74.

[273]

Li S, Xie ZP, Xue WJ, Luo XD, An LN. Sintering of high-performance silicon nitride ceramics under vibratory pressure. J Am Ceram Soc 2015;98:698-701.

[274]

Wang WD, Yao DX, Chen HB, Xia YF, Zuo KH, Yin JW, Liang HQ, Zeng YP. ZrSi2-MgO as novel additives for high thermal conductivity of β-Si3N4 ceramics. J Am Ceram Soc 2020;103:2090-100.

[275]

Yu JJ, Guo WM, Wei WX, Lin HT, Wang CY. Fabrication and wear behaviors of graded Si3N4 ceramics by the combination of two-step sintering and β-Si3N4 seeds. J Eur Ceram Soc 2018;38:3457-62.

[276]

Zhou W, Long L, Bu GB, Li Y. Mechanical and microwave-absorption properties of Si3N4 ceramic with SiCNFs fillers. Adv Eng Mater 2019;21:1800665.

[277]

Wang C, Wang BL, Qiao RQ, Zhang F, Wang ZJ, Chen LJ. Effect of sintering temperature on microstructures and tribological characteristics of dense α-Si3N4-based ceramic coating on porous Si3N4 ceramics. J Alloys Compd 2019;776:927-33.

[278]

Han K, Luo NN, Mao SF, Zhuo FP, Liu LJ, Peng BL, Chen XY, Hu CZ, Zhou HF, Wei YZ. Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: insight into the origin of antiferroelectricity. J Mater Chem A 2019;7:26293-301.

[279]

Francisco BE, Jones CM, Lee SH, Stoldt CR. Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolytes. Appl Phys Lett 2012;100:103902.

[280]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248-53.

[281]

Kim H, Wang ZW, Alshareef HN. MXetronics: electronic and photonic applications of MXenes. Nano Energy 2019;60:179-97.

[282]

Peng JH, Chen XZ, Ong WJ, Zhao XJ, Li N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro-and photocatalysis. Inside Chem 2019;5:18-50.

[283]

Pang JB, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu ZF, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019;48:72-133.

[284]

He P, Wang XX, Cai YZ, Shu JC, Zhao QL, Yuan J, Cao MS. Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 2019;11:6080-8.

[285]

Bu FX, Zagho MM, Ibrahim Y, Ma B, Elzatahry A, Zhao DY. Porous MXenes: synthesis, structures, and applications. Nano Today 2020;30:100803.

[286]

Zhang JQ, Zhao YF, Guo X, Chen C, Dong CL, Liu RS, Han CP, Li YD, Gogotsi Y, Wang GX. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal 2018;1:985-92.

[287]

Zeng XJ, Cheng XY, Yu RH, Stucky GD. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020;168:606-23.

[288]

Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B, Hong S, Yu ZZ. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018;12:11193-202.

[289]

Vural M, Pena-Francesch A, Bars-Pomes J, Jung HH, Gudapati H, Hatter CB, Allen BD, Anasori B, Ozbolat IT, Gogotsi Y, Demirel MC. Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv Funct Mater 2018;28:1801972.

[290]

Wang QW, Zhang HB, Liu J, Zhao S, Xie X, Liu LX, Yang R, Koratkar N, Yu ZZ. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv Funct Mater 2019;29:1806819.

[291]

Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016;353:1137-40.

[292]

Zhang M, Cao J, Wang Y, Song J, Jiang TC, Zhang YY, Si WM, Li XW, Meng B, Wen GW. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res 2021;14:699-706.

[293]

Lukatskaya MR, Kota S, Lin ZF, Zhao MQ, Shpigel N, Levi MD, Halim J, Taberna PL, Barsoum MW, Simon P, Gogotsi Y. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2017;2:17105.

[294]

Tian WQ, VahidMohammadi A, Reid MS, Wang Z, Ouyang LQ, Erlandsson J, Pettersson T, Wågberg L, Beidaghi M, Hamedi MM. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv Mater 2019;31:1902977.

[295]

Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 2018;8:1703043.

[296]

Wang ZX, Xu Z, Huang HC, Chu X, Xie YT, Xiong D, Yan C, Zhao HB, Zhang HT, Yang WQ. Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano 2020;14:4916-24.

[297]

Huang XW, Wu PY. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv Funct Mater 2020;30:1910048.

[298]

Ahmed B, Ghazaly AE, Rosen J. i-MXenes for energy storage and catalysis. Adv Funct Mater 2020:2000894.

[299]

Li K, Wang XH, Wang XF, Liang MY, Nicolosi V, Xu YX, Gogotsi Y. All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy 2020;75:104971.

[300]

Wen YY, Rufford TE, Chen XZ, Li N, Lyu MQ, Dai LM, Wang LZ. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 2017;38:368-76.

[301]

Chen ZW, Li ZY, Li JJ, Liu CB, Lao CS, Fu YL, Liu CY, Li Y, Wang P, He Y. 3D printing of ceramics: a review. J Eur Ceram Soc 2019;39:661-87.

[302]

Yang LL, Zeng XJ, Zhang Y. 3D printing of alumina ceramic parts by heat-induced solidification with carrageenan. Mater Lett 2019;255:126564.

[303]

Yang LL, Zeng XJ, Ditta A, Feng B, Su LZ, Zhang Y. Preliminary 3D printing of large inclined-shaped alumina ceramic parts by direct ink writing. J Adv Ceram 2020;9:312-9.

[304]

Guo HZ, Baker AL, Guo J, Randall CA. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. J Am Ceram Soc 2016;99:3489-507.

[305]

Wang CW, Ping WW, Bai Q, Cui HC, Hensleigh R, Wang RL, Brozena AH, Xu ZP, Dai JQ, Pei Y, Zheng CL, Paste G, Gao JL, Wang XZ, Wang H, Zhao J-C, Yang B, Zheng XY, Luo J, Mo YF, Dunn B, Hu LB. A general method to synthesize and sinter bulk ceramics in seconds. Science 2020;368:521-6.

[306]

Zhang PP, Wang FX, Yang S, Wang G, Yu MB, Feng XL. Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications. Energy Storage Mater 2020;28:160-87.

[307]

Liu L, Zhao HP, Lei Y. Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review. InfoMat 2019;1:74-84.

[308]

Liu NS, Gao YH. Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture. Small 2017;13:1701989.

[309]

Verma AS, Kumar D, Dubey AK. A review of an innovative concept to increase the toughness of the ceramics by piezoelectric secondary phases. Ceram Int 2018;44:16119-27.

[310]

Nan BY, Liu YS, You QW, Wan JJ, Shen ZJ, Li HX, Yuan B, Cheng LF, Wang G. Microstructure and properties of porous SiC ceramics modified by CVI-SiC nanowires. Adv Eng Mater 2019;21:1800653.

[311]

Li S, Xie ZP, Zhang YM, Zhou YF. Enhanced toughness of zirconia ceramics with graphene platelets consolidated by spark plasma sintering. Int J Appl Ceram Technol 2017;14:1062-8.

[312]

Wang LJ, Qi Q, Cai P, Zhang H, Yang X, Liu XJ, Jiao Z, Huang ZR. New route to improve the fracture toughness and flexural strength of Si3N4 ceramics by adding FeSi2. Scripta Mater 2017;126:11-4.

[313]

Moriana AD, Zhang SJ. Lead-free textured piezoceramics using tape casting: a review. J Materiomics 2018;4:277-303.

[314]

Zeng XJ, Liu WL, Chen JH. Preparation and properties of BNNTS/B4C laminates. Rare Met Mater Eng 2015;44:249-52.

[315]

Sun MY, Bai YH, Li MX, Fan SW, Cheng LF. Improved toughness and electromagnetic shielding-effectiveness for graphite-doped SiC ceramics with a net-like structure. J Eur Ceram Soc 2018;38:5271-81.

[316]

Zhao HP, Lei Y. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv Energy Mater 2020;10:2001460.

[317]

Simon P, Gogotsi Y. Perspectives for electrochemical capacitors and related device. Nat Mater 2020:1-13.

[318]

Dinh TM, Achour A, Vizireanu S, Dinescu G, Nistor L, Armstrong K, Guay D, Pech D. Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 2014;10:288-94.

[319]

Djire A, Ishimwe JY, Choi S, Thompson LT. Enhanced performance for early transition metal nitrides via pseudocapacitance in protic ionic liquid electrolytes. Electrochem Commun 2017;77:19-23.

[320]

Chen YJ, Liu ZE, Sun L, Lu ZW, Zhuo KL. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte. J Power Sources 2018;390:215-23.

[321]

Oyedotun KO, Masikhwa TM, Lindberg S, Matic A, Johansson P, Manyala N. Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene. Chem Eng J 2019;375:121906.

[322]

Kitazawa Y, Iwata K, Kido R, Imaizumi S, Tsuzuki S, Shinoda W, Ueno K, Mandai T, Kokubo H, Dokko K, Watanabe M. Polymer electrolytes containing solvate ionic liquids: a new approach to achieve high ionic conductivity, thermal stability, and a wide potential window. Chem Mater 2018;30(1):252-61.

[323]

Chen CR, Qin HL, Cong HP, Yu SH. A highly stretchable and real-time healable supercapacitor. Adv Mater 2019;31:1900573.

Journal of Materiomics
Pages 1198-1224
Cite this article:
Zeng X, Song H, Shen Z-Y, et al. Progress and challenges of ceramics for supercapacitors. Journal of Materiomics, 2021, 7(6): 1198-1224. https://doi.org/10.1016/j.jmat.2021.03.001

128

Views

17

Crossref

22

Web of Science

29

Scopus

Altmetrics

Received: 28 December 2020
Revised: 22 February 2021
Accepted: 01 March 2021
Published: 10 March 2021
© 2021 The Chinese Ceramic Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return